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Summary

This thesis details an investigation into the factors that could be restricting the per-
formance of tin sulfide thus far. It is shown that there is confusion in the literature with
respect to the assignment of different tin sulfide phases, and that the presence of these
phases cannot easily be discerned with routine diffraction methods. In order to better un-
derstand the behaviour of tin sulfide in devices, it is important to isolate these materials as
separate components and to consider the distinct properties of each. Herein, the targeted
synthesis of SnS, SnS2 and Sn2S3 by chemical vapour transport is used to produce phase-
pure single crystals, which are characterised in terms of structural, optical and electrical
properties. These are compared directly with results from modern simulation methods as
well as the work of others to explore fully the possible origins of performance losses. It is
found that the work function of SnS is significantly lower than those of alternate successful
photovoltaic materials, which means that novel device architectures are necessary in order
to unlock the full potential of this promising photo-absorber. Concerns are also raised
regarding the stability of the tin monosulfide phase with respect to degradation and defect
formation over time, processes that undoubtedly affect device performance and lifetimes
if sufficient safeguards are not put in place to suppress them. Further results of this 3 year
research project also provide a broader platform for achieving sustainable light harvesting
devices from the abundant and cheap elements, tin and sulfur.
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“On the arid lands there will spring up industrial colonies without smoke
and without smokestacks; forests of glass tubes will extend over the plains and
glass buildings will rise everywhere; inside of these will take place the pho-
tochemical processes that hitherto have been the guarded secret of the plants,
but that will have been mastered by human industry which will know how to
make them bear even more abundant fruit than nature, for nature is not in a
hurry and mankind is. And if in a distant future the supply of coal becomes
completely exhausted, civilization will not be checked by that, for life and
civilization will continue as long as the sun shines!”

G. Ciamician, 1912.
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Chapter 1

Introduction

1.1 Solar energy

To date, the development of the global economy has been based on large reserves of fossil

fuels that can be burned to provide energy for heat, electricity and work. These reserves

correspond to energy from the sun captured by organisms over hundreds of millions of

years, now being depleted at such a rate that mankind is beyond the threshold of anthropo-

morphic climate change and ocean acidification from CO2 release.1 With rising population

and an accelerated rate of global development, energy demand only continues to rise, lead-

ing to predictions of peak oil occurring before 2030.2,3 Consequently, one of the greatest

challenges facing humanity is maintaining the current standard of living for future gener-

ations, without causing irreparable damage to the global ecosystem. The first step towards

such an end is the reduction, or indeed, elimination of CO2 emissions.4

Renewable energy is a term describing methods of power generation that do not deplete

finite fuels or release net positive amounts of CO2 to the atmosphere. Almost all of these

technologies derive their energy either directly or indirectly from the sun, as the solar

resource is enormous. Quantitatively it has been estimated that the earth receives around

1



885 million terawatt hours worth of solar energy each year,5 which is greater than 16

thousand times more energy than was consumed globally in 2011.6

In this thesis, photovoltaic (PV) technology is to be discussed; the use of semicon-

ductor materials to harvest the massive solar resource directly to produce electricity. This

technology offers a number of significant benefits over alternative renewable energies, in-

cluding:

• PV systems are within the reach of individuals, co-operatives and businesses that

want to mitigate variable energy costs.

• Unlike many other electricity generation technologies, PV cells are sufficiently small

to be used for temporary or mobile structures such as military bases and vessels.7

• The solar resource is available everywhere in the world. Even Germany, which

receives relatively low levels of solar radiation (as shown in Figure 1-1), was able to

meet 5.7 % of its national energy consumption using PV in 2013.8

• Unlike conventional power plants, PV has relatively low operation costs and re-

quires no maintenance. Combined with manufacturers’ warranties of up to 25 years

for installed devices, PV provides a valuable cost hedge against volatile fossil fuel

prices.

• While PV electricity production is variable, it does have a high coincidence with

peak electricity demand, as also shown in Figure 1-1.9 It is also easy to anticipate

based on modern weather prediction technology.

• The record efficiency for PV devices is more than five times greater than the best

possible efficiencies for photosynthesis before the biomass can be processed into

2



fuels for energy.10,11 Also, unlike biofuels, PV need not compete with space for

agriculture or nature, with rooftop solar a viable option.12

• Reductions in PV production costs mean that solar energy can now compete on a

cost per watt basis with conventional methods of generation in Italy, Spain and Ger-

many.13 Many other regions with relatively low electricity production costs and/or

large solar resources are also predicted to achieve this parity before 2020.14

Figure 1-1: Yearly sum of solar irradiation in Europe (left) and power generation by type
in Germany on a sample date as shown (right).15

Unfortunately, generating the total amount of energy we now consume using solar

power alone is practically impossible in the near term future, and getting even close raises

issues with resource availability. Thus to maximise the potential of PV in the long-term,

it is important to consider component suitability today. In order to accomplish such a task

however, it is important to first deconstruct existing photovoltaic technologies in order to

identify areas of potential improvement.

3



1.2 Solar cell operation

This section describes the operating principles of photovoltaic technology and the physical

properties one would seek in the associated components.

Beginning with the material that absorbs the sunlight, a semiconductor is required.

A semiconductor by definition is a material with a band gap i.e. a discontinuity in the

allowed energetic states of electrons in the solid. This feature is the key to photovoltaic

activity as it acts as the barrier to electron relaxation after being excited by a photon. If

no such barrier is present the electron can dissipate the energy of the photon by heat on a

timescale too rapid to prevent. A larger band gap means more potential energy or voltage

can be provided by a device, but fewer photons can be absorbed, and it is this parameter

that determines electrical current. Together voltage and current dictate a cells power and

a compromise should be found between the two. Shockley and Queisser calculated that

the optimal absorber band gap occurs at a photon energy of around 1.34 electron volts,16

using the solar energy spectrum experienced at the earth’s surface, both of which are shown

in Figure 1-2. This provides a convenient screening parameter for potential photovoltaic

materials.

Besides presenting a magnitude in energy, band gaps can also be direct or indirect in

nature. For a band gap to be direct, an electron must be able to traverse said gap with

no change in crystal momentum. If this is not the case the gap is said to be indirect. It

is desirable for a photovoltaic material to exhibit a direct band gap as indirect band gap

materials require light and heat to promote electrons across the gap, with an associated

weaker optical absorption and loss of device efficiency.

When light shines on a semiconductor and a photon is absorbed, an electron is pro-

moted from the full valence band to the empty conduction band where it can migrate away

4



Figure 1-2: The Shockley Queisser limit of maximum PV efficiency as a function of band
gap and average solar spectral irradiance outside the earths atmosphere (extraterrestrial)
and incident on the surface (terrestrial).17

from its original position. This leaves behind an effective positive charge as the species

was neutral to begin with. This electron ‘hole’ can be filled by a neighbouring electron,

creating another hole on the adjacent space. This mechanism can be repeated such that

the electron vacancy migrates in the opposite direction to the electrons filling the previ-

ous holes. Thus for each photon absorbed two mobile charge carriers are produced, one

positive and one negative.

Normally, as the excited electron (with a negative charge) and coexistent hole (with a

positive charge) are electrostatically attracted to each other, they won’t migrate very far

apart. This binary species is called an exciton and will have a lifetime typically of femto-

seconds before the electron ejects a photon that corresponds to the energy of the band gap

and recombines with the hole it left behind. This process is termed radiative recombination

and is an undesirable process for PV applications as that electron is no longer available

to do work. However, the exciton is stabilised or ‘screened’ by the dielectric constant of

the material and if one applies an electric field across an exciton, it is possible to cause

the bound hole and electron to migrate away from each other. A potential gradient can
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be generated without the need for any externally applied bias by using crystal defects, in

what is called a p-n junction.

While, in an ideal, pure semiconductor there are no available states for an electron or

hole to occupy in the band gap, all crystals, except at zero Kelvin, contain impurities or im-

perfections. If these impurities introduce a localised empty state slightly higher in energy

than the valence band, it will be able to accept an electron from the valence band. This

will leave behind a hole that can act as a charge carrier and conduct. When a significantly

large amount of these defects are present in a material, it determines the conductivity, and

the material is termed p-type (where p stands for positive). Conversely, if the majority

of defects have a filled state slightly lower in energy than the conduction band, then the

electrons from the dopant can be easily promoted to the empty band. Conduction can then

occur predominantly with the electron charge carrier, and is the case for so-called n-type

materials (where n stands for negative).

If a p-type and n-type material are placed together the charge carriers recombine at

the interface between the two, forming a depletion zone. This acts to charge the interface

of the p-type substrate negative (because the holes have been filled by electrons) and the

n-type substrate positive (because the electrons have moved across the interface to fill the

holes). By employing this set up in a photovoltaic cell, a natural electric field is provided

so that when excitons are created by photons, the charge carriers can separate across this

field and produce a working current.

It is important to note that these defect states can also be introduced intentionally as

extrinsic dopants. In this way it is possible control conductivity and even create an p-

n junction across a single material by doping opposing sides differently. However, care

must be taken in the selection of suitable dopants as defect energy levels that are close to

the centre of the band gap can allow for charge recombination in so called trap-assisted or

Shockley-Read-Hall recombination.
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As well as the p- and n-type materials there must be electrodes present that are able to

collect the charges once they have been separated by the p-n junction. For this reason it is

important that both components of the junction allow for as large a charge carrier diffusion

length as possible, and as small a thickness as possible, to increase the likelihood that the

charges reach the contact before recombination.

The so-called back electrode in a cell, i.e. the component placed furthest from the light

source, is usually a metal, as metals have high conductivity and reflectivity. This allows

the electrode to not only collect charges but also reflect any photons that were not absorbed

by the photoactive material back into the cell, thereby reducing losses.18

Finally the top electrode, or window layer, must be able to function as an electrode

and, at the same time, be stable with respect to exposure to atmospheric conditions and be

transparent to visible light. The class of materials selected for this task are ‘transparent

conducting oxides’ (TCOs) because they typically have wide enough band gaps to be

inactive with respect to photon absorption up to around 3 eV and they are stable in air

as they are already oxidised. The most common TCOs at the time of writing are indium

doped tin oxide (ITO), fluorine doped tin oxide (FTO) and aluminium doped zinc oxide

(ZnO:Al).

The electrodes may not have a band gap (metals certainly do not) but are still able to

receive charge carriers from the p-n junction. That is because all materials have energeti-

cally allowed states that fill predictably, starting from the lowest in energy and increasing

from there. The energy up to which the states are filled is called the Fermi level and in a

p-type semiconductor will usually correspond to the valence band maximum. By defini-

tion this must exist below the energy of a free electron outside the material, known as the

vacuum level, or else the material would not be stable. The difference in energy between

the Fermi level and the vacuum level is called the work function and characterises how

strongly a solid holds on to its electrons. This is important as electrons will spontaneously
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move from a solid with a low work function to a large work function if they are able, and

so factor into device design.

The four components discussed in this section are arranged as shown in Figure 1-3.

Figure 1-3: Schematic of a thin-film solar cell. A successful example might include a gold
cathode, a cadmium telluride photoactive component, a cadmium sulfide charge transport
layer and a zinc oxide transparent anode.

All of the materials properties discussed in this section that directly affect device oper-

ation can be found or approximated from first principles simulation methods or reported in

experiment using modern spectroscopic techniques. Thus, it is possible to assess the pho-

tovoltaic suitability of a given material without the need to fabricate a PV device. Indeed,

assessing the absorber material properties outside of a device configuration can yield a

greater understanding of the likely limiting factors that are obscured once contained within

a cell.

1.3 Solar cell fabrication

Modern photovoltaic technology can be traced back to 1879 when Adams and Day de-

scribed a generation of internal voltages in a selenium cell upon exposure to sunlight.19

Since this initial discovery, photovoltaic devices have progressed from the first cell with an

efficiency of 1%,20 through the original device of modern architecture at 6 % in 1954,21
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to single-junction cells today with certified efficiencies of 28.8%.22

There are typically considered to be three generations of PV cell technologies available

depending on the materials used and the level of commercial maturity. Each of these has

its own advantages and disadvantages that are subsequently discussed.

1.3.1 First generation: Crystalline silicon photovoltaics

First-generation PV systems are fully commercialised and use single crystalline or multi-

crystalline silicon. Commercial production of crystalline silicon modules began in 1963

when the ‘Sharp’ Corporation installed a 242 W PV fixture on a lighthouse, the world’s

largest installation at the time.23 Not only is this technology mature in itself, but it builds

upon the accumulated knowledge base of the silicon-chip electronics industry and benefits

from the fact that silicon is one of the most abundant elements in the earth’s crust. As a

result, these type of cells dominate the current PV market, accounting for around 87 % of

global PV sales in 2010.9

The record efficiency for a crystalline silicon module currently stands at 24.7 %,24

with typical commercial cells in the range of 14 to 19 %.9 However, silicon is an indirect

band gap material and as such needs a larger light-harvesting region than typical direct gap

materials in order to operate effectively.25 The large thickness of high purity crystalline

silicon required leads to high processing costs and has been estimated to incur losses of

around 20 % in device efficiency,26 as the increased distance charges must travel before

extraction means recombination is more likely to occur. These factors form the primary

impetus behind the wealth of research that has led to the development of the subsequent

generations of photovoltaic devices.
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1.3.2 Second generation: Thin-film photovoltaics

‘Second generation’ is a term used to refer to devices that recently reached market matu-

rity. These cells, more commonly referred to as ‘thin-film’ devices, are considered promis-

ing alternatives to crystalline silicon solar cells because the photoactive components are

more optimal photon absorbers. As a consequence, they require up to 99 % less active

material than crystalline silicon in order to absorb the same amount of light (typically 1 to

4 µm in thickness).9

For this reason, among others, thin-films cells are thought to be the simplest, cheapest

and most sustainable method of solar cell production.27 Besides which, the highest effi-

ciency achieved to date for a single junction cell was obtained with a thin-film device.22

The three primary types of thin-film solar cells in terms of commercial development

are:

• Amorphous silicon

• Cadmium telluride

• Copper indium selenide and copper indium gallium diselenide

Amorphous silicon solar cells are the most mature thin-film solar cells, with module

efficiencies in the range of 4 % to 8 %, and the record efficiency standing at 10.1 %.28

A major disadvantage of amorphous silicon cells howeverm is that they suffer from a

significant reduction in power output over time (up to 35 %), as sunlight degrades their

performance.

Cadmium telluride thin-film PV cells have the lowest production costs of any PV tech-

nology,9 but they have high efficiencies (a record of 19.6 %)22 and are robust with respect

to imperfections.29 Perceived issues surrounding the toxicity of elemental cadmium have
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been shown to be baseless,30 however tellurium is relatively rare and expensive. Regard-

less, the so-called payback time for CdTe cells has been shown to be less than one year, a

powerful advantage over first generation technologies.31

Copper indium selenide and copper indium gallium diselenide (CIGS) PV cells also

offer high efficiencies of up to a record 19.8 %,22 but they are afflicted by the same prob-

lems as CdTe in that the constituent element gallium is rare and expensive. Both CIGS

and CdTe commercial modules typically range between 7-11 % in efficiency, but this is

expected to increase as the relatively new technologies mature.9

1.3.3 Third generation: Novel and emerging technologies

Third-generation describes systems that are still under demonstration or are not yet market

ready. Some third-generation PV technologies are beginning to be commercialised, how-

ever it remains to be seen how successful they will be in taking market share from existing

technologies. The most notable third-generation PV devices are:

• Multi-junction

• Organic

• Hybrid perovskites

• Dye-sensitised

Multi-junction, or tandem solar cells consist of a stack of multiple different semicon-

ductors, chosen to absorb separate regions of the solar spectrum individually. Naturally

such cells can achieve greater efficiencies than single junction devices, with a record of

44.4 %,22 and a theoretical limit of 59 % efficiency.32 The most commonly employed

materials are Ge, GaAs or InGaAs, and InGaP, which are expensive in themselves and
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the extra processing requirements increase costs further. As such, these expensive devices

are usually reserved for critical applications e.g. satellite deployment and space-faring

technologies.33

Organic solar cells are composed of carbon based, usually polymeric materials, that

now have efficiencies in the range 4 to 5 % commercially and a 10.7% record.22 The

major challenge for organic solar cells is their instability over time, much the same as

amorphous silicon, but their production allows for high-speed and low temperature man-

ufacturing techniques. As a result, organic solar cells may become cost competitive with

other PV technologies in certain applications, as the manufacturing costs are marginal and

continuing to decline.9 For example, their lightweight and flexible properties make them

ideal for mobile applications such as wearable electronics.

Hybrid perovskite (CH3NH3PbI3) material research dates back to the 1920’s,34 but

only recently has the field attracted a great deal of excitement after a reported inclusion

of them into a device.35 The record efficiencies for these devices have exploded from the

original 3.8 % in 2009 to 19.3 % at the time of writing.36 While these high efficiencies

are obtained only in the lab and are typically very short-lived, the mechanism behind

these high efficiencies is potentially novel. One theory states that the organic molecule in

this inorganic structure represents a rotating dipole that can stabilise generated charges or

enhance applied fields (see Figure 1-4).37 The full effect of this is yet to be understood but

it seems safe to assume that hybrid perovskites, or materials of similar nature, will play a

major role in the future of photovoltaics.

Finally, the class of devices known as dye-sensitised cells use chemically tunable dyes

adsorbed onto a high surface area TiO2 substrate as the photoactive component. The strong

absorption and chemical functionality associated with molecular dyes makes them ideally

suited for PV applications, and the possibility of absorbing light over multiple ranges of

the electromagnetic spectrum with a mix of dyes (similar to the operation principles of
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Figure 1-4: Schematic of hybrid perovskite crystal structure showing the inorganic ‘cage’
and intercalated molecule (left) with the associated dipole of the organic component
(right).37

tandem devices) is appealing.38

In practice, however, this technology suffers from many drawbacks, not least among

which is that it is the only PV cell to contain a liquid component.39 This so called redox

mediator is required in order to regenerate the dye after photo-excitation, however not

only is this component corrosive, but the repeated thermal expansion of this fluid during

normal photovoltaic operation can compromise device seals, resulting in relatively short

device lifespans.40 This branch of research has suffered a recent reduction in interest as

many research groups transition to the more promising hybrid perovskite devices that are

equally facile to solution process, simpler and yield higher efficiencies.41

In addition to the above mentioned third-generation technologies, there are a number of

novel solar technologies under development that use quantum dots,42 quantum wires,43 or

quantum wells.44 These technologies are thought to be able to achieve very high efficien-

cies in certain applications by overcoming the thermodynamic limitations of conventional

cells, but they are currently far from commercial deployment. The certified progress of all

of the technologies discussed in this section, and more, are plotted over time in Figure 1-5.
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1.4 Earth abundant PV

It was shown in Section 1.1 that photovoltaics is a vital component of the future energy

generation mix. The desirable properties of ideal components were also shown in Section

1.2, and it was discussed that current technologies are not ideal in Section 1.3, so now the

potentially sustainable alternatives can be considered.

This thesis will focus on the photoactive semiconductor component (see Figure 1-

3) as this forms the basis around which the remainder of a device is constructed. The

method of deployment has also been chosen to be thin-film technologies, which allow for

the substitution of existing materials with new candidates as well as being the cheapest

mode of PV. Indeed, several currently cheap photoactive materials exist that are being

investigated to replace current, more expensive, materials.

Iron disulfide (FeS2) was first proposed as a candidate for photovoltaics and photo-

catalysis in 1984.45 FeS2 has a band gap of 0.95 eV, large absorption coefficient and an

adequate charge carrier diffusion length.46 However, difficulties in isolating phase pure

material continue to plague this field of research.47

Similarly, Cu2S is a potential photoabsorber with an indirect band gap of 1.21 eV,48 a

high absorption coefficient,49 and favourable charge transport properties.50 Unfortunately,

in this case, copper ion diffusion into the contacting solid components from the absorber

compound has been shown to degrade performance over time.51

The low-cost photovoltaic material probably receiving the most interest currently is

Cu2ZnSnS4 (CZTS). CZTS is a quaternary chalcogenide and was introduced as a photo-

voltaic material in 1988 by Ito and Nakazawa.52 CZTS has an ideal direct band gap of

1.45 eV,52 high optical absorption coefficient and good charge mobilities.53 The record

efficiency for CZTS is an impressive 8.4 %,53 but partial substitution of sulfur content
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with selenium allows for an even higher light-to-electricity conversion efficiency of 12.6

%.54 Unfortunately, this comes at increased expense due to the use of the rarer selenium.

As an alloy of Cu2S, ZnS and SnS2, element availability is not a concern, but control-

ling the component ratios can be difficult. It has been shown that the desirable phase of

CZTS occupies just a small fraction of the overall phase space for the system, as shown in

Figure 1-6,55,56 and has little or no thermodynamic barrier to phase separation.57 Conse-

quently, phase segregation to ternary, binary and even elementary constituents have been

observed,56 as also shown in Figure 1-6, all of which affects device performance.58

Figure 1-6: Observed phase segregation for CZTS samples (left),58 and the phase space
stability diagram of CZTS (right) with respect to chemical potential (µ). The stability
region highlighted in red.56

This thesis will consider the application of tin sulfide (SnS) for use in sustainable pho-

tovoltaics - a relatively new photovoltaic candidate. The thesis begins in earnest with sub-

sequent assessments on the suitability of tin sulfide as a photovoltaic material, specifically

with regard to deployment in second generation architectures, on the relative abundance

of tin sulfide and finally on the environmental impacts of forming tin sulfide.
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1.5 Photovoltaic suitability of SnS

Tin monosulfide has an optical band gap of between 1.30 eV59 and 1.43 eV,60 which coin-

cides with the optimum band gap for maximum theoretical efficiency within the terrestrial

solar spectrum, more so than either FeS2 or Cu2S discussed in the previous section.16

SnS also exhibits intrinsic p-type conductivity and has a higher optical absorption coef-

ficient than CdTe (> 1× 105 cm−1).61,62 With these, among other favourable parameters

observed for SnS,63,64 it has been shown that a single junction device ought to be able to

achieve up to 24 % efficiency.65–67

Besides these physical properties, SnS must be more facile to synthesise than the earth-

abundant CZTS as it is itself a binary component of the quaternary material. Thus, by all

preliminary measures tin sulfide is an ideal photoabsorbing PV component. However, it

has been shown that there are many ways of harvesting energy from the sun, but if pho-

tovoltaics are ever to deliver a significant portion of global energy demands, one must

consider more than just the semiconductor physics of a material. The cost, stability, toxic-

ity, abundance and the physical suitability of components must be considered. The degree

to which these terms can be applied to SnS is assessed in the following sections.

1.6 Earth abundance of SnS

The desire to break record device efficiencies has led to the use of increasingly elaborate

and precise cell fabrication techniques, regardless of cost or commercial scalability. For

example the record single junction cell efficiency found for any material to date is using

gallium arsenide, which not only contains the expensive element gallium but the toxic

element arsenic. Both of these components are expected to limit the future commercial

deployment of this technology, rendering the wealth of research on this topic almost purely
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academic. As such the elemental availability of SnS is subsequently discussed in order to

assess the degree to which global energy demand could be met using this material.

Figure 1-7: Abundance of elements in the earth’s crust relative to silicon as a function of
atomic number.68

Unlike the chalcogenides in the technologies discussed in Section 1.3 (tellurium and

selenium), sulfur is known to be widely earth abundant. Figure 1-7 shows that sulfur

is thought to be orders of magnitude more abundant in the earth’s crust than copper or

lead, and so is not predicted to become an endangered element in the foreseeable future.

However, the availability of tin in this case, is more of a concern.69

At least one aspect of tin availability is self-evident, and that is that, unlike certain

elements, tin is broadly available across geo-political boundaries. This was a key factor of

bronze age civilisation development across Europe circa 3000 BC (bronze being an alloy

of tin and copper). As such the commodity supply of tin is more robust with respect to

political instability or economic turbulence, unlike, for example, localised global reserves

of lithium in Bolivia or dysprosium in China.69 This consideration has been quantified
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using the so-called Herfindahl-Hirschman Index, in which tin scores more favourably than

either bromine or chromium for example.70

Not only is tin widely available but its abundance in the earth’s crust is relatively high,

as shown in Figure 1-7. It is estimated to be orders of magnitude more abundant than

either cadmium or tellurium, for example.

In order to quantitatively assess how sustainable the use of tin sulfide in photovoltaic

devices would be, the amount of tin and sulfur one would require to meet the energy

demands of human civilisation is subsequently approximated.

The reported amount of energy consumed in 2011 was 12,275 million tonnes of oil

equivalent.6 However, the approximate amount of energy that can be harvested using mod-

ern power stations is around 4,400 GWh/Mton oil.6 This means that the energy required

to power the globe in 2011 was approximately 54,000 TWh. Given that there are 8,766

hours per year, the total annular global energy consumption was around 6.16 TW.

The earth receives around 8.85× 108 TWh per year in solar energy from the sun.5

Again, given that there are 8,766 hours per year, there is 1.01×105 TW of energy incident

to the earth. Assuming a global surface area of 5.10×108 km,71 the average solar energy

available per meter squared is 197.96 W/m2 per year. This is incredibly conservative,

considering that commercial sources estimate that solar energy averages at about 1,000

watts per square meter, but is unsurprising given that this scenario considers all of the

earth’s surface, including the poles.

The record efficiency for a single junction device is 28.8 %,22 but commercial cells

typically range between 11 - 15 %, as discussed in Section 1.3. As such it seems not

unreasonable to choose 10 % as an efficiency for future SnS PV to achieve. With these

hypothetical 10 % efficient cells the average energy that could be harvested would be

19.796 W/m2 per year.

Continuing, it can be found that the required coverage for these model 10 % cells, given
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the derived value for the average global solar radiation, would be 311,234 km2, which is

approximately the surface area of the Philippines or the U.S. State of New Mexico. While

this may seem large at first it is in fact smaller than the estimated coverage of ‘urban’ areas

of the globe in the year 2000 and a quarter of the estimated area occupied by urban areas

in 2030.72 These growth predictions are doubly promising from a photovoltaic perspective

as it is in Africa, Asia and India where the highest rates of urban growth will take place

- parts of the world that are rich in available solar resource. Given that PV is suitable for

deployment in existing urban environments (i.e. rooftop solar), it would appear that any

earth-abundant cell with 10 % efficiency could make great strides towards a sustainable

energy future.

Now it is possible to consider how much material one would need to meet global

energy demand using tin sulfide PV alone. It was stated in Section 1.3 that thin-film cells

typically use between 1 and 4 micrometer thickness of photoactive material. In order to

be, again, conservative in the assumptions of this calculation, let the thickness of SnS for

these hypothetical 10 % cells be 5 µm. This thickness of material over the area already

calculated, yields a volume of 1.556× 106 m3 tin sulfide, a material with a density of

5,150 kg/m3. As such 3.233×106 kg of SnS would be needed to meet the world’s energy

needs, 2.545×106 kg of which is tin.

The world total tin reserves are estimated by the US geological survey to be 4.7×109

kg as of 2014,73 three orders of magnitude higher than that required to power the world

in this scenario. The definition of ‘reserve’ in this context being identified tin deposits

which could be economically extracted or produced at the time of determination. As such

it would appear that tin sulfide is indeed worthy of the title ‘earth-abundant’ and able to

support global scale deployment of photovoltaic technology.

If we extend this hypothetical SnS cell to include common alternate device compo-

nents, such as a molybdenum back contact, a zinc oxy-sulfide charge transport layer and
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an aluminium doped zinc oxide window layer, it is possible to expand this study on mate-

rials abundance.

As of January 2012, the United States Geological Survey predicted there to be 2.5×

1011 kg of zinc and 9.98× 109 kg of molybdenum in known extractable reserves. Given

that both of these masses are larger than that of tin, and that both zinc and molybdenum

are lighter than tin (i.e there are more moles of atoms per given mass) we can see that such

a device would be capable of making a huge contribution to a sustainable energy future

before constituent element availability became of critical concern. And this scenario does

not take into account PV device recycling practices that are possible even today.74

Similar calculations have been performed for other photovoltaic materials showing

that multiple PV technologies could meet global energy demands themselves, as shown in

Figure 1-8.

Figure 1-8: Maximum potential for deployment of alternative photoactive materials with
known mineral reserves. Both band gap and optical absorption coefficient are included in
the calculation of potential electricity generation.75

21



1.7 Environmental impacts of SnS

It has been shown already that silicon is earth abundant (Figure 1-7) but the necessary

processing for semiconductor grade crystalline silicon is an energy intensive process that

is problematic with regards to device costs. As such, it is important to consider not just

the relative abundance but the ease of extracting and refining tin metal, along with any

relevant environmental impacts of such practices, in order to ensure that SnS would not

suffer the same fate.

Figure 1-9: Annual production of elements important to the field of photovoltaics, reflect-
ing the relative abundance of both sulfur and tin.15

Figure 1-9 shows recent values of annual production of some of the most common

components in photo-converter materials, corroborating earlier discussions on availability

and showing the production of tin is already relatively high. However, projecting future

production is not quite so straightforward, for example gallium, indium and tellurium are

by-products of zinc,76 tin,77 and copper15 extraction respectively. While indium is indeed

important for PV technologies it is also a vital component of flat screen and touch screen

technologies that have enjoyed massive commercial success recently. Were demand for
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indium to continue to rise, it is expected that the rate of extraction of tin would increase

concomitantly,69 maintaining low-cost and high availability into the medium term future.

While such predictions are difficult to quantify, there are several other assessments that

can be made based on information available today.

Life cycle analysis (LCA) is an important tool for considering factors beyond availabil-

ity, for example if large amounts of energy are required to extract raw tin, the time before a

tin sulfide solar cell offsets its own production costs could be significant. Using SimaPro 7

software, accurate data for impacts on human health, ecosystem and materials resource for

the extraction and importation of several relevant semiconductor materials was found.78

Figure 1-10: Impact analysis of commonly used PV components, where the unit ’Pt’ indi-
cates one thousandth of the yearly environmental load of an average European citizen. In
order, the elements are copper in red, gallium in green, indium in yellow, molybdenum in
blue, tin in grey and zinc in pink.

Figure 1-10 displays the results from the LCA analysis, comparing the various im-

pacts of copper, molybdenum, gallium, tin, indium and zinc (where the unit ’Pt’ indicates

one thousandth of the yearly environmental load of an average European citizen). These

elements were chosen based on relative importance to the PV industry as well as data

availability within the SimaPro toolkit. It is clear from this data that tin mining and refin-

ing represents a fraction of the environmental impact of alternate elements employed by
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the photovoltaics industry today.

Carbon footprints also afford a convenient parameter to compare relative energy inten-

siveness of industrial processes. The carbon footprint associated with the extraction and

importation of 1 kg of each element is found to be 16.1 kg of CO2 for tin; 3.17 kg of CO2

for zinc; 8.95 kg of CO2 for molybdenum; 145 kg of CO2 for indium; 162 kg of CO2 for

gallium and 1.86 kg of CO2 for copper, again showing tin to be relatively sustainable.

In conclusion, tin has an associated CO2 footprint less than one tenth of that of gallium

and is not considered critical or endangered in the medium term.69 The environmental

impacts are also relatively low and would appear to remain so for the foreseeable future.

Assuming tin sulfide’s potential as a PV material can be realised, the decrease in reliance

on fossil fuels and rare elements should represent a great step towards reducing the impacts

of society on the global ecosystem.

1.8 SnS performance to date

The ideality of tin sulfide with respect to various factors has been presented up to now, but

the feature that truly defines the sustainability of SnS, i.e. the pay-back time for devices,

is photovoltaic efficiency.

The first SnS PV device was reported in 1994 by Noguchi et al.,79 where a CdS/SnS

p-n junction was deposited on a silver contact using vacuum evaporation. The transparent

conducting oxide layer was indium-tin-oxide. All of these device components and their

method of synthesis are fairly standard in the field, yet the obtained efficiency of 0.29 %

is incredibly low.

Spurred on by the screening studies of Dittrich et al.,80 which showed that ‘sulfos-

alts’ were promising candidates for PV, Reddy et al. also created an early SnS device in

1997. This time with a recorded efficiency of 0.5 %.81 Despite this poor performance the
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observed quantum efficiency (i.e. the probability that one photon will deliver one elec-

tron to the external circuit) was approximately 70 %, which indicates that the limiting

factors correspond to issues surrounding device fabrication and are not due to tin sulfides

performance as a photoactive material.

However, the progress of improvement proved incremental until the record efficiency

stood at 1.3 % at the time of commencement for this project (2011).61 As of the conclusion

of this work, in 2014, the record stood at a certified efficiency of 3.88 %.82

Thus, the crux of this research project is revealed. Sections 1.5 - 1.7 showed how

by all accounts SnS ought to be ideal for photovoltaic applications, yet the record device

efficiencies loosely correspond to those of silicon in the early 20th century. The subsequent

sections of this thesis will investigate various possible origins of this anomalous behaviour.

1.9 Potential flaws of SnS

The previous discussions have shown the ideality of pure tin sulfide for PV applications

but that obtained device efficiencies have been remarkably low. There are multiple pos-

sibilities as to the origin of these low efficiencies for SnS, perhaps the likeliest of which

is the formation of the alternate phases of SnS that may be less than ideal for PV appli-

cations. Indeed, there is evidence of this occurring, Figure 1-11 shows an example of an

X-ray diffraction pattern performed on a film of SnS that shows traces of Sn2S3 forma-

tion,83 and it has even been shown that pre-purchased ‘SnS’ powder contains up to 55 %

Sn2S3 by weight.84

Evidence for the presence of phase impurities in CZTS has already been shown (see

Section 1.4), however the record efficiencies for this material are more than twice those

for SnS. As such, besides the issues relating to the accessible locations of the sulfur - tin

phase diagram, one must also consider alternate efficiency loss mechanisms.
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Figure 1-11: Example X-ray diffraction pattern of a thin-film showing mixed phases of tin
sulfide.83

The possibility of spontaneous and irreversible reaction with oxygen is well-known.

Not only are SnO2 and SnO known to exist but three tin sulfate compounds are also thought

to be stable. Even still, externalities such as O2 or moisture exposure are possible to

minimise, and presumably the tin in CZTS would oxidise in a similar way.

It is possible that chemical reactions occur between the SnS and alternate device com-

ponents. A ‘detrimental’ reaction has been observed between a deposited film of CZTS

and a molybdenum back contact, forming layers of MoS2, and still the efficiencies of

CZTS routinely obtained in a lab are much higher than the best performance of SnS. While

not all reactions are expected to be deleterious to photovoltaic performance, it is expected

to be a source of major discrepancies in performance between two different devices.

It is also possible that cation migration can limit performance, which was found to be

the case for almost all Cu2S devices as discussed in Section 1.4.85 Once again, it would be

seem that if this were the case for SnS, why not CZTS, given that it contains copper ions

as well as tin?

This research project aims to perform an in-depth analysis of tin sulfide by combin-
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ing high-quality experiment and computation. It is hoped that greater understanding of

this material could unlock a new sustainable candidate for large-scale photovoltaics and

improve knowledge in the wider field of sustainable PV.

1.10 Thesis structure

This thesis describes a joint theoretical and experimental project and contains three re-

search results chapters. Each chapter lists results obtained on single crystals of phase

pure tin sulfide and density functional theory simulations on corresponding perfect, infi-

nite solids. These are compared with alternate findings in the literature throughout and

followed by a discussion section to conclude each chapter.

The first chapter contains the synthesis conditions and relative energies of the obtained

phases of tin sulfide with respect to various conditions, in order to evaluate the chemical

stability of SnS. The second chapter details studies on the opto-electronic properties of

tin monosulfide, sesquisulfide and disulfide in order to ascertain whether the presence of

alternate phases might adversely affect photovoltaic performance. The final results chapter

investigates the intrinsic defects and transport properties of SnS to better understand the

behaviour of tin sulfide inside a working photovoltaic device.

This thesis concludes with a discussion of the important results found over the course

of this three-year project and suggestions for future work, in order to carry these conclu-

sions forward.
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Chapter 2

Methodology

This chapter details both the methods of synthesising single crystal tin sulfide phases and

the methods of deriving calculated properties.

2.1 Experimental methods

The following section describes the experimental methods used to synthesise tin mono-

sulfide (SnS), tin sesquisulfide (Sn2S3) and tin disulfide (SnS2), using chemical vapour

transport.

2.1.1 Single crystal growth

Thin-films of SnS have been formed by many different deposition techniques,63,86–93 but

single crystals of tin monosulfide have only been grown previously by the BridgmanStock-

barger,94 or chemical vapour transport method.95 The method chosen to create phase-pure

single crystals in this project was chemical vapour transport (CVT), a method first pro-

posed in 1957 as a way to vaporise a metal at relatively low temperatures by forming a
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volatile chemical intermediate.96 CVT involves placing the elemental components of the

desired crystal compound in a sealed and evacuated quartz ampoule along with a carrier

agent and then subsequently enforcing a temperature gradient across the ampoule, provid-

ing the driving force for the crystal formation.

For tin, iodine has been shown as an optimum carrier agent,97 and also been success-

fully used in the synthesis of CZTS single crystals.98 As such, to synthesise tin sulfide,

tin (> 99 % powder, Aldrich) and stoichiometric amounts of sulfur (> 99.999 % pieces,

Puratronic, hand crushed with an agate pestle and mortar) were placed in silica ampoules

that are 15 cm in length and 2 cm in diameter. Iodine (99.999 % pieces, Aldrich) was

placed in the same ampoule, in quantities corresponding to the 5 mg cm3 as recommended

by Nitsche et al. to deliver the solid more slowly than the rate of crystal growth.97

The ampoule was then evacuated under the effect of liquid nitrogen in order to prevent

the I2 from evaporating under vacuum. Prior to ampoule evacuation, all components were

exposed to air and the associated content thereof, which represents a potential source of

impurities, for example, oxidation or the inclusion of moisture. Care was taken when

considering net mass of components, as ampoule explosions were known to occur upon

heating.

The apparatus itself consisted of a horizontal tubular furnace (Elite Thermal Systems

Ltd.) with four independently controlled zones within the furnace. The applied temper-

atures were chosen to be greater than the boiling point of the carrier phase, in order for

it to be gaseous, but below the boiling point of the desired crystal, in order for it to crys-

tallise. Given that the boiling point of tin iodide is 348 ◦C and that of tin monosulfide

is approximately 1230 ◦C,99 a large scope of temperature gradients is possible for this

method.

The temperatures of the individual furnace zones were chosen after calibration with

a thermocouple drawn along inside of the furnace, such that the desired gradient was
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obtained across the length of the ampoule, as shown in Figure 2-1. During the experiments

the ampoule was in contact with the alumina work tube of 30 mm internal diameter that

constituted the wall of the furnace, with end plugs for the furnace made of ceramic fibre.

A schematic representation of the system used in this project and the chemical pro-

cesses that this induces is also included in Figure 2-1, showing that tin is consumed at

high temperature and migrates as tin iodide towards the cooler end of the ampoule where

the tin sulfide forms and releases the iodine. Concentration causes diffusion of I2 back

towards the tin creating a cycle.

Figure 2-1: Schematic of the chemical process induced by CVT (left), with red and blue
showing higher and lower temperatures, respectively. The crystals are in yellow and the
solid components black. A sample temperature profile along an ampoule at an unrefined
(a) and a refined stage (b) of adjustment is also shown (right), compared to a desired
condition.98

2.2 Theoretical methods

In this section the first principles methods used to analyse and predict semiconductor prop-

erties are discussed.
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2.2.1 Ab initio calculations

Almost all methods of ab initio electronic structure calculations will follow a procedure

similar to that shown in Figure 2-2, which is the implicit methodology behind all of the

theoretical results discussed in this thesis. The subsequent discussions contain the numer-

ical methods of performing each of the decision components of this work flow.

Figure 2-2: Representative flow chart of an ab initio calculation process. For a solid-state
calculation the input is the crystal structure and the output is the total energy and ground
state properties of the material.
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2.2.2 Electron density convergence

As can be seen in Figure 2-2 the first step in completing an ab initio calculation is arriving

at a converged electron density. The resulting solution is unique to a given level of theory

and will lead to different structure and property predictions between them. In this thesis

Hartree-Fock theory, density functional theory and hybrid methods will be considered as

procedures for converging the spatial arrangement of electrons.

2.2.2.1 The Schrödinger Equation

Virtually all of chemistry depends on the behaviour of electrons, as such it has long been

the goal of science to describe and predict this behaviour. A wave function (Ψ) is a de-

scription of an electron that allows for its quantum properties to be detailed. In 1926

Erwin Schrödinger proposed a way of relating an electron wave function to its physical

environment, known as the Schrödinger equation:

ĤΨ(ri,rI, t) = EΨ(ri,rI, t) (2.1)

where Ĥ and E are the Hamiltonian operator, containing all of the energy terms for a

system, and system energy respectively. The variables ri and rI are the coordinates of the

electron and nucleus, again, respectively and t is time. Unfortunately this equation can

only be solved analytically for one electron. Thus to derive the properties of anything

beyond a hydrogen atom, an approximate solution to the Schrödinger equation must be

found.

Firstly, it is possible to neglect time, as the desired solution to the Schrödinger equation

is the lowest energy (i.e. ground state) configuration of Ψ, which is constant in time. This

is known as the ‘adiabatic approximation’.100 Secondly, it is possible to neglect the effects
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of gravity and relativity given the infinitesimal mass of an atom and that the velocities of

a typical electron in a (e.g. hydrogen) atom are less than 1 % the speed of light.101,102

For heavy elements such as europium, relativity must be accounted for, but this does not

impact on this study.

Now the wave function depends only on the electronic and nucleic coordinates, ri and

rI , becoming

ĤΨ(ri,rI) = EΨ(ri,rI) (2.2)

where the components of the Hamiltonian operator are the kinetic energies of the nu-

clei (TI) and electrons (Ti), and the potential energies for nucleus-electron (UIi), electron-

electron (Ui j) and nucleus-nucleus (UIJ) interactions

Ĥ = TI +Ti +UIi +Ui j +UIJ (2.3)

Furthermore, when one considers that neutrons and protons are each around 2,000

times more massive than an electron,103 it is possible to see that were a nuclei to move,

the electrons would respond almost instantaneously and always occupy the ground state

of that given nuclear configuration. Born and Oppenheimer proposed therefore, that the

positions of the nuclei could be considered constant,104 effectively decoupling the nuclear

and electronic dynamics and leading to:

Ĥ = Ti +UIi +Ui j (2.4)

The kinetic energy term for n electrons is given as

Ti =−
h̄2

2me

n

∑
i

∇
2
i
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where me is the mass of an electron and h̄ is the reduced Planck constant. ∇2
i is called the

‘Laplacian operator’ and is the divergence of the gradient of the position of n electrons in

Cartesian space:

∇
2
i =

δ 2

δx2 +
δ 2

δy2 +
δ 2

δ z2

The second term of the Hamiltonian (Equation 2.4) describes the attraction of n elec-

trons due to N nuclei

UIi =−
N

∑
I

n

∑
i

ZI

|rIi|
(2.5)

where ZI is the charge of the nuclei.

The third term in Equation 2.4 is the repulsion of the n electrons to each other

Ui j =
1
2

n

∑
i 6= j

1
|ri j|

(2.6)

and covers all cases where i 6= j to exclude self interaction, with the factor 1/2 correcting

for double counting.

Substituting in all these terms, the Hamiltonian operator, Ĥ, of Equation 2.2 is now

given by

Ĥ =− h̄2

2me

n

∑
i

∇
2
i −

N

∑
I

n

∑
i

ZI

|rIi|
+

1
2

n

∑
i 6= j

1
|ri j|

(2.7)

However, even in this simplified form, solving the Schrödinger equation is too demand-

ing for systems where the number of electrons is greater than one, due to the electrostatic

term for the electron-electron interaction. This is called the many body problem and is

a major obstacle considering that virtually all systems of interest have a large number of
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quantum bodies to be described. Consequently, further assumptions must be made.

2.2.2.2 Describing the many body wave function

To describe a system of many bodies, their full quantum behaviour must be accounted

for. Electrons belong to a class of elementary particle called ‘fermions’. These particles

are characterised as having a half-integer spin, and obeying the Pauli exclusion principle

that forbids them from occupying the same quantum state.105 As a result, the total wave

function must be anti-symmetric with respect to the exchange of particles, i.e. the wave

function reverses sign if the space and spin co-ordinates of any two particles are inter-

changed. That is to say

Ψ(x1,x2, ...,xi, ...x j, ...,xn) =−Ψ(x1,x2, ...,x j, ...xi, ...,xn) (2.8)

where x accounts for both position and spin r, s.

It is possible to find a many body wave function for a system if the electrons are treated

as if they do not interact with each other. The Hamiltonian for such a system of n non-

interacting electrons is

Ĥ =
n

∑
i=1

h(i) (2.9)

where h(i) is the operator describing single electron kinetic and potential energies.

The single electron Schrödinger equation can be solved to obtain a set of single electron

spin orbitals (χ).

h(i)χ(xi) = Eχ(xi) (2.10)

Now the many body wave function of the system can be written as
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Ψ(x1,x2, ...,xn) =
1√
n!


χ(xi) χ(xi) · · · χ(xi)

χ(xi) χ(xi) · · · χ(xi)
...

... . . . ...

χ(xi) χ(xi) · · · χ(xi)

 (2.11)

which is known as a Slater determinant.106 It satisfies the Pauli exclusion principle (Equa-

tion 2.8) as exchanging two rows yields a change in sign of the determinant, and if any

two rows are equal the determinant is zero.

A single Slater determinant is used as an approximation to the electronic wave function

in the first widely successful method of solving the Schrödinger equation: Hartree-Fock

theory.

2.2.2.3 Hartree-Fock theory

While in principle the only information required to solve the Schrödinger equation is a

species’ atomic number and spatial coordinate, the equation is too complex to solve for

anything beyond a one electron system. Several approaches can be employed to make the

problem manageable; the first of which to be broadly implemented was the Hartree-Fock

theory (HFT).

Hartree-Fock calculations rely on what is known as the ‘variational principle’, that

is to say that a guess or ‘trial’ electron density determines a trial Hamiltonian and wave

function (Ψt) with an energy greater than or equal to that of the ground state. As such, the

electron density that results in the lowest energy is the desired ground state density.

To arrive at this density in HFT, the single-particle wave functions (χ) of a Slater de-

terminant (Equation 2.11) are varied individually to find an electron density iteratively.107

This method is called the self-consistent field (SCF) method and conceptually corresponds
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to each electron interacting with the mean field of the other electrons in the system. In this

way HFT allows for the computation of a converged electron density necessary for the

archetypal ab initio calculation shown in Figure 2-2.

Significantly, the use of anti-symmetric single electron wave functions in this method

introduces a term that accounts for the interaction felt between electrons of the same spin.

This is called the exchange energy and yields:

Ui j =UH
i j +Ux

i j (2.12)

where UH
i j is the Hartree potential that describes the Coulomb interaction between elec-

trons i and j, of the form

UH
i j =

n

∑
j=1

∫ |χ j(r′)|2

|r− r′|
dr′ (2.13)

and Ux
i j is the exchange potential

Ux
i j =−

n

∑
j=1

χ j(r)
∫

χ∗j (r
′)χi(r′)

|r− r′|
dr′ (2.14)

In the Hartree-Fock method this exchange energy is formally exact; however, there is

no description of the interactions between electrons of different spin, the so-called cor-

relation energy. Fortunately there are alternate methods that allow for correlation to be

accounted for.

2.2.2.4 Density functional theory

Density functional theory (DFT) is an alternate method of solving the Schrödinger equa-

tion that has enjoyed massive success in recent years. It is based on a proof theorem put

forward by Hohenberg and Kohn in 1964,108 which states that the total energy, including
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both exchange and correlation energies, of an electron gas is a unique functional of the

electron density. The minimum value of this functional yields the ground state energy, and

the corresponding density is the exact single electron ground state density.

Unfortunately, while Hohenberg and Kohn were able to provide this proof, they were

not able to outline a suitable method for implementation. Kohn and Sham would later

provide a pathway to making such calculations possible in 1965.109

The Kohn-Sham method

Kohn and Sham approached the problem by decomposing the density of an n-electron

system into that of n non-interacting electrons. This yields so-called Kohn-Sham orbitals

(χi(r)) that are solutions to the Schrödinger equation

[
−1

2
∇

2 +Ue f f (r)
]

χi(r) = εiχi(r) (2.15)

Here ε is the energy corresponding to the Kohn-Sham orbital and Ue f f is a unique effective

potential with a ground state charge density ρ(r)

ρ(r) =
N

∑
i=1
|χi(r)|2 (2.16)

In DFT the total energy of an interacting system is given as

Etot [ρ(r)] = Ti[ρ(r)]+EH [ρ(r)]+Exc[ρ(r)]+
∫

UIi(r)ρ(r)d(r) (2.17)

Here the notation [ρ(r)] is used to show that a term, for example, the energy functional

E, is a function of electron density, ρ , which is itself a function of location, r.

The kinetic energy functional is given by
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Ti[ρ(r)] =−
h̄2

2me

n

∑
i

χi(r)∇2
i χi(r)dr (2.18)

and the electrostatic or Hartree functional is

EH [ρ(r)] =
e2

2

∫ ∫
ρ(r)ρ(r′)
|r− r′|

drdr′ (2.19)

The Exc[ρ(r)] term is the exchange correlation functional and contains all of the un-

known interaction terms. For this case, as well as exchange and correlation, the interacting

component of the kinetic energy is also unknown, as the Ti[ρ(r)] (Equation 2.18) is derived

from the non-interacting Kohn-Sham orbitals χi(r) and not the electron density.

The wave functions that minimise the energy functional (Equation 2.17), are provided

by Equation 2.15, in which

Ue f f =UiI +UH
i j +Uxc

i j (2.20)

where Uxc
i j is δExc[ρ(r)]/δρ(r).

In this way it is possible to map a system of interacting particles onto a system of

non-interacting particles with the same charge density. Thus a relatively high level of

accuracy is obtained for a relatively low computational cost.

All of these equations are solved self consistently in the same manner as the HFT

method; however, as already stated, the Exc[ρ(r)] functional is not yet known. Fortunately,

it is possible to approximate this term in order to find a solution to this method. This is

fortuitous as, while this term typically accounts for less than 10% of the total energy, it is

actively involved in determining materials properties.110
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Local Density Approximation

All of the terms of the energy functional are now known apart from the exchange correla-

tion (XC) functional, however, it is possible to obtain an exact XC energy functional for a

homogeneous electron gas.111,112

The local density approximation (LDA) is a method that assumes that the exchange-

correlation energy per electron at a point r in a system is equal to the exchange-correlation

energy per electron in a homogeneous electron gas of the same density (εhom
xc )113–115

Exc
LDA[ρ] =

∫
ρ(r)εhom

xc (ρ(r))dr (2.21)

The LDA reproduces materials properties well, even for homogeneous systems where

the electron density does not resemble that of a homogeneous electron gas. The success

of the LDA can partly be attributed to the fact that some of the errors involved in the XC

energy are systematically cancelled, i.e the correlation energy is underestimated and the

exchange energy is overestimated. However, one notable problem experienced with LDA

calculations is that the binding energies between atoms is overestimated with respect to

experiments and can lead to incorrect results for ground state structures, leading to flaws

in associated property predictions.

Generalised Gradient Approximation

It is possible to generate more accurate XC functionals by treating both the local and

semi-local density information; this is known as the generalised gradient approximation

(GGA) and means that the gradient of the electron density at a given point in space is also

accounted for.
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Figure 2-3: Schematic representation of the LDA and GGA treatments of electron density,
showing the increased accuracy of GGA due to the inclusion of the density gradient.110

Exc
GGA[ρ] =

∫
ρ(r)εGGA

xc (ρ(r),∇ρ(r))dr (2.22)

Therefore GGA is LDA with density gradient as an additional variable and is able to

retain LDA’s analytic properties.116 This higher level of treatment can be seen from the

schematic shown in Figure 2-3.

In general for non-metallic systems, GGA based calculations tend to reproduce the key

properties of real systems, such as atomic structure, with a greater degree of accuracy than

LDA. The overestimated binding energies observed in the LDA are corrected for within

GGA and the band gaps of materials are reported with improved accuracy.110

While within the LDA there is an exact form of the XC potential, within the GGA

the XC energy has been fitted by a number of analytic forms.117,118 The one chosen for

use in this work is that of PBEsol,119 unless otherwise stated. The PBEsol functional

was specifically developed to describe electron exchange in solids and surfaces and is

an empirically modified version of the successful Perdew, Burke and Ernzerhof (PBE)
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functional.

With an exchange correlation functional identified, we now have all constituting terms

for the total energy functional (Equation 2.17) that allows us to converge an electron den-

sity for an ab initio calculation (Figure 2-2).

2.2.2.5 Hybrid functionals

We saw previously that HFT describes electron exchange exactly but discounts correlation,

while DFT treats both exchange and correlation by approximation. This led Becke120,121

to conclude that a fraction of the exchange energy evaluated using HFT, mixed with DFT

GGA exchange and correlation would improve the overall accuracy of a calculation. Such

a hybrid calculation takes the form

Exc
hyb[ρ] = Ex

HF [ρ]+α(Ex
GGA[ρ]−Ex

HF [ρ])+Ec
GGA[ρ] (2.23)

where α is an empirically derived coefficient to describe the degree of splicing of the

HFT and GGA methods. In particular the value of α is chosen to be 0.25 for the inclusion

of screened HF exchange in this project.

The functional developed by Heyd, Scuseria, and Ernzerhof (HSE06) for hybrid calcu-

lations is the chosen method of electronic structure calculations in this thesis.122 For solid

state materials this method has shown to be among the most accurate methods available,

even more so than higher levels of theory.123 However, the computational expense of this

method is orders of magnitude larger than the previously discussed HFT or DFT.

2.2.3 Atomic position convergence

Up to now all methods discussed have aimed to converge the electron density to the ground

state configuration for a given nuclear coordinate. However there will be an overall energy
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minimum with respect to both electronic and nucleic configuration for a given level of

theory.This is the second iterative loop of the typical ab initio calculation shown in Figure

2-2.

To find this ground state atomic arrangement, the forces acting on each ion are cal-

culated after each electronic minimisation and the ions are driven down the force vector

before a subsequent electronic iterative convergence calculation is again performed. After

successive minimisation of electronic and atomic energies the system will reach its min-

imum energy configuration and stop once the forces acting on each atom reach below a

predefined criterion.

2.2.3.1 Hellman-Feynmann theorem

Forces on atoms arise from both atomic and electronic sources and the Hellman-Feynman

theorem provides an efficient way to account for them that is computationally accessi-

ble.124,125

The theorem states that, if an exact Hamiltonian Ĥ and the corresponding wave func-

tion Ψ are calculated, the force on an atom (FI) is the expectation value of the partial

derivative of Ĥ with respect to atomic position rI . Since only two potential terms are

related to rI , the theorem leads to

FI =−
dE
drI

=−δUIJ

δ rI
−
∫

δUIi

δ rI
ρ(r)dr (2.24)

Therefore, after taking an electronic iteration, the forces can be calculated by perform-

ing simple derivative operations. Based on these calculations, it is possible to direct atoms

down a potential energy gradient and identify the overall ground state configuration, with

relative computational ease.

While either HFT, DFT or hybrid methods can be used in conjunction with this geo-
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metric minimisation, it is important to note that for hybrid calculations, in this project, the

atomic configuration is pre-relaxed at the DFT level described. This is due to the excessive

computational cost of the HSE06 method.

2.2.4 Periodicity of solids

The methods discussed in the previous sections of this chapter are trivially applicable to

molecules or atoms in free space. However, solids will typically contain of the order

of 1023 quantum particles that define bulk properties and observed behaviour. This is

orders of magnitude too large to calculate at the levels of theory discussed in this thesis.

Fortunately, solids are characterised by a repeating periodic arrangement of atoms. If

we assume that a solid is perfect, it is possible to treat it as a repeating infinite unit cell

structure using periodic boundary conditions. The most common method of implementing

this in ab initio methods is using plane wave basis functions.

2.2.4.1 Plane wave representation

Atoms in most solids are arranged in a periodically repeating pattern, as such, any quantity

of interest that depends on position (r) will be periodic as well. For example, a given

potential (U) acting on electrons will be invariant under translation with respect to the unit

cell length (R) i.e.

U(r) =U(r+R) (2.25)

where R= nx+ny+nz (n is an integer and x,y and z are the unit cell vectors). Similarly,

the electron density in a solid is also periodic as it too depends on position

ρ(r) = ρ(r+R) (2.26)
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Bloch realised that the electrons in a solid retain the form of a propagating free electron,

differing only by a periodic modulation associated with the ionic positions,126

Ψ(r) =Ceik·r (2.27)

in which C is the potential of the atom core and k is the wave vector (where crystal mo-

mentum is p = h̄k). Bloch mapped the same plane waves onto the structurally repeating

pattern of a solid and made the wave functions quasi-periodic with the introduction of a

periodic cell potential uk(r).

Ψk(r) = uk(r)eik·r (2.28)

where uk(r) has the same periodicity as the potential.

The wave function can now be written

Ψk(r+R) = uk(r+R)eik·(r+R)
Ψk(r)eik·R (2.29)

In this way all relevant entities such as wave functions, potential, electron densities or

energies can be expressed in periodic form. Thus we arrive at the final iteration check of

the ab initio calculation procedure of Figure 2-2, as the periodic boundaries of a model

solid can be varied to allow greater degrees of freedom in the geometric relaxation stage.

2.2.4.2 Pseudo-potential approximation

Almost all solid state ab initio codes implement periodic boundary conditions, but em-

ployed methods of approximating the potentials for these are where simulation packages

differ.

It is possible in materials simulations to account for all electrons with numeric atom-
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centred orbitals, as does the Fritz Haber Ab Initio Molecular Simulations Package (FHI

AIMS) code used in this thesis. However, this is computationally quite expensive and not

practical with plane waves, as it requires too many to describe wave function oscillations

close to the nuclei.

A simplification of this method is to approximate atoms as having bound ‘core’ elec-

trons and free ‘valence’ electrons. The core electrons contribute little to chemical bonding

or observed materials properties but still would require wave functions to describe them

correctly. To avoid this, core electrons are represented by pseudo-potentials, which repre-

sent the long-range interactions of the core and produce pseudo-wave functions outside of

the core. Within the core the pseudo-potential is as uniform as possible, thus significantly

reducing the number of plane waves required and reducing the computational load.

The Vienna Ab Initio Simulation Package (VASP) code used in this project employs

the so-called projector-augmented wave (PAW) potentials. These were first proposed by

Blöchl,127 to map both core and valence wave functions with separate descriptions.

The Ψinter of the valence part is represented with a plane wave expansion (see preced-

ing section), while the Ψcore of the core part is projected on a radial grid at the atom centre.

After the addition of these two terms, the overlapping part Ψnet , is subtracted to make the

final wave function ΨPAW

ΨPAW = Ψinter +Ψcore−Ψnet (2.30)

Owing to the use of the core wave function, the overall complexity is reduced while

still allowing for a high level of accuracy.
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2.3 Methods comparison & discussion

In this chapter it was shown how, via a series of applicable assumptions, it is possible

to simulate a perfect bulk system in its ground state crystal structure. Such a perfect

solid is most closely analogous to single crystals, sought by CVT in this case, where the

system is allowed to adopt its preferred structure, not subject to any epitaxial strain or

confinement effects that may be present in thin-films or nanoparticles. As such, the results

presented in the remainder of this thesis are considered directly comparable, whether they

be derived by spectroscopy or mathematical transformation. It is expected therefore, that

as well as allowing for the identification of likely efficiency loss mechanism for SnS in PV

applications, it is also possible to comment on the suitability of either method, especially

when compared with the results presented in the literature for this system.
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Chapter 3

Single crystal synthesis &

thermodynamic properties

This chapter begins with the identified and optimised routes for synthesising the single

crystals of SnS, Sn2S3 and SnS2, as these crystals will form the basis of much of the

discussion in the remainder of this thesis. Subsequently, the density functional theory

calculations performed to obtain relevant physical parameters are presented. It will be

shown that these calculations yield complementary results that aid in the consideration of

the observed behaviours of the synthesised crystals and help derive important conclusions

regarding tin sulfide.

3.1 Single crystal growth & characterisation

It was shown in Chapter 2 that the ability to extract physically meaningful properties from

ab initio calculations depends upon arriving at a ground state configuration with respect to

both electronic and ionic coordinates. Consequently, only the three ground state phases of
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the tin sulfide system were sought in single crystal synthesis.

The established conditions for optimal crystal growth are listed in Table 3.1, corre-

sponding to the stoichiometric amounts of solid reagents with examples of resultant crys-

tals shown in Figure 3-1. These conditions agree well with the work of others,95 and

imply that to obtain phase pure SnS, one must rapidly cool the reaction in order to escape

the lower temperature gradients required to synthesise the competing phases, i.e. prevent

phase dissociation. Indeed, rapid quenching of SnS below 650 ◦C was a technique em-

ployed by Lambros et al. in their isolation of “almost perfect” crystals.128 As a result, SnS

has only been obtained as a smooth, black crystal of poorly defined morphology in this

project, as it is quickly cooled from a temperature greater than its melting point.

Table 3.1: Reaction conditions required to synthesise the separate phases of tin sulfide.

Phase Temperature difference (◦C) Mass of tin (g) Mass of sulfur (g) Time
SnS 850 - 950 1.579 0.427 10 days
SnS2 600 - 950 1.691 0.897 12 days
Sn2S3 500 - 650 1.781 0.723 10 days

The crystal structure for each of the phases was confirmed with X-ray diffraction

(XRD). For Sn2S3 and SnS2 single-crystal diffraction was possible, which confirmed the

ground state Pnma structure of Sn2S3 with structural parameters in agreement with previ-

ous reports.129 For SnS2 an extended R-3 polytype was identified, which is closely related

to the known ground state P-3m1 phase but with an AAB layer stacking.130 The ill-defined

morphology of bulk SnS, resulting from the rapid cooling process from above its melting

temperature, was not conducive to single-crystal diffraction; however, powder diffraction

pattern of a ground sample resulted in the expected Pnma phase.131 The powder diffraction

pattern of the SnS phase is shown in Figure 3-2, whereas the crystallographic information

files generated for the single crystal analysis are contained in the Appendix, Table A.1.

The powder-diffraction measurements were performed on a Bruker D8-Advance machine
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(a) SnS crystals (on the left of the ampoule)

(b) Sn2S3 crystals (in the centre of the ampoule)

(c) SnS2 crystals (on the left of the ampoule)

Figure 3-1: The appearance of single crystal batches obtained from chemical vapour trans-
port, as labelled. The ampoules were identical in size for each case.

and the single-crystal XRD was performed on an X-calibur, Atlas, Gemini-ultra X-ray

diffractometer, both for a Cu Kα radiation source.

The predicted patterns for the different structures in this work are also shown in Figure

3-2, generated using CrystalDiffract software version 6, which deduces intensities using

published atomic scattering factors. It can be seen that the similarities in diffraction pat-

terns would lead to difficulties in distinguishing any SnS2 present in a SnS sample as

the dominant SnS2 (001) peak overlaps the (111) reflection of the desired SnS. Similarly,

Sn2S3 exhibits its largest peak at just over 30◦ for (211), indicating that observing small
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(a) SnS powder diffraction pattern (red) and
simulated diffraction (green).

(b) SnS ground state Pnma phase

(c) Ground state P-3m1 SnS2 phase (d) Ground state Pnma Sn2S3 phase

Figure 3-2: Obtained and predicted powder XRD patterns for SnS alongside predicted
powder XRD patterns for a Cu Kα radiation source.

amounts of tin sulfide phase impurities in a sample predominantly composed of tin mono-

sulfide would be difficult using XRD alone. This is, perhaps, how commercially available

‘SnS’ powder is reported to contain up to 55 % Sn2S3 by weight.84

In order to assess the stoichiometries and morphology, a high-performance JEOL JSM

6610-LV scanning electron microscope (SEM) fitted with an Oxford Instruments X-Max

800 mm energy-dispersive spectrometer (EDS) was used for multiple point-scans of the

single crystals. The crystals were unpolished and unsputtered but the results agree well

with the structural assignments of the XRD analysis (Table 3.2).
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With the combined XRD and EDS analysis the phase assignment of the three materials

is clear, with dark gray SnS, black needles of Sn2S3, and yellow flakes of SnS2. However,

this assignment is in contradiction to previous studies. Nitsche et al. reported black needle-

like crystals of SnS, whereas following the same procedure in this study yielded Sn2S3.97

Price et al. described yellow plates of Sn2S3 and black needles of SnS2, the opposite of

what is observed here.132 Many more authors report brown coloured tin sulfide films,92

with tunable properties based on Sn:S ratios;133,134 a description which corresponds to

none of the pure phases and could indicate a mechanical mixture of compounds.135 This

is problematic in the case of photovoltaics as grain boundaries and localised impurities can

act to trap and recombine generated charges.136

Table 3.2: Elemental composition of single crystals obtained as atomic percent using en-
ergy dispersive spectroscopy and their macroscopic appearance.

Phase Sn (%) S (%) Appearance
SnS 49.54 50.46 dark grey amorphous solid
SnS2 31.58 68.42 yellow transparent flakes
Sn2S3 39.88 60.12 shiny black needles

3.1.1 Single crystal stability

The stability of the crystallites with respect to temperature and oxygen exposure was as-

sessed via thermo-gravimetric analysis (TGA) using a Perkin Elmer 4000 Thermogravi-

metric Analyser. The crystals were heated from 21 ◦C to the maximum operating temper-

ature of 858 ◦C under a flow of air in alumina crucibles. The recorded mass variance as a

function of temperature for each of the tin sulfide phases is shown in Figure 3-3.

SnS exhibits a sharp increase in mass beginning at around 550 ◦C that would indicate

oxygen uptake prior to sulfur loss at around 710 ◦C. This behaviour is likely to be due to

the ability of tin to hold both a 2+ or a 4+ charge, i.e. bind extra anions, and explains why
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Figure 3-3: Thermo-gravimetric analysis of each of the three phases SnS (left), Sn2S3
(centre) and SnS2 (right) showing change in mass as a function of temperature under a
flow of air.

no such increase in mass occurs for SnS2.

The Sn2S3 data shows little change until degradation occurs at around 550 degrees,

similar to the onset of degradation of SnS, but higher than that of SnS2, at around 450 ◦C.

Tin sesquisulfide also does not appear to incorporate additional oxygen as does SnS, and

therefore would appear to be more stable.

The graph for SnS2 shows a two stage mass loss, one beginning at 150 and the other

at 450 ◦C. The low temperature mass loss of around 0.5 mg quantitatively is most likely

due surface contaminants and is evidence of residual iodine from the chemical transport

synthesis method.

In all cases, significant mass loss is assumed to be due to substitution of sulfur for

oxygen, rather than evaporation of components, as the large residual mass observed would

suggest that the heavy tin component remains. That said, all of the TGA results indi-

cate that the crystals are stable at ambient conditions with respect to oxygen exposure.

However, a surface effect was noted to occur over a period of weeks of exposure to at-

mospheric conditions that was identified as being localised oxidation on the surface of
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Figure 3-4: Observed localised oxidation of SnS single crystals, using scanning electron
microscopy at the scales indicated.

SnS single crystals. These took the form of nodules on the crystal surface as shown by

the SEM analysis in Figure 3-4, containing high levels of oxygen as found by EDS. The

nucleation procedure and growth mechanism for this process remain unknown due to the

extended time frame over which they occur, however, these processes were not observed

for the Sn2S3 or SnS2 crystals.

Figure 3-5 again shows that SnS is not stable with respect to atmospheric conditions,

with macroscopic amounts of sulfur loss observable around the interior of its container

after being kept at temperatures no greater than 28 ◦C (post synthesis). This is in contrast

to the known self-limiting oxidation behaviour of metal surfaces that cease to degrade

after a monolayer of oxide has formed.137 A possible mechanism for such extensive sulfur

loss is the formation of sulfur dioxide upon exposure to air. SO2 has a vapour pressure

of around 3 atmospheres at room temperature,138 which would allow for the continued

decomposition of SnS in an open environment. It is also possible that exposed defects or

defect clusters allow for the onset of localised oxygen degradation.

The volatility of SnS has been shown to be problematic for the CZTS system,139 how-

ever, the yellow colour of the desorbate shown in Figure 3-5 would indicate a large loss
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Figure 3-5: Observed macroscopic amounts of sulfur loss observed for single crystal SnS
(left) but not for Sn2S3 (centre) or SnS2 (right). All crystals displayed were synthesised at
least three months prior to the image being taken.

of elemental sulfur (proportionally at least), considering that SnS is black. Further work

is needed in order to fully assess the degradation pathway observed for SnS crystals, how-

ever it is possible to rule the role of iodine given the stability of the alternate phases despite

synthesis occuring via the same carrier agent.

The progressive decomposition of SnS (but seemingly not SnS2 or Sn2S3 in the time

scales of this project) represents the first potential culprit for poor device performance

of this material. While it is true that these observations were made with single crystals

in contact with oxygen, it is possible that chemical degradation occurs in the absence of

oxygen, or even in the conditions represented by a sealed solid state PV device as it has

already been discussed that sulfur can react with molybdenum in devices. Certainly it

would seem that sulfur is mobile to some degree, even at ambient conditions, given that

degradation is not limited to a surface monolayer.
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3.1.2 Single crystal purity

The presence of orange crystallites adhered to certain surfaces of the SnS were observed

under a visible light microscope, even after repeated washing procedures. This was later

identified as being residual SnI4 from the CVT synthesis. Grazing incidence X-ray analy-

sis performed on a Rigaku SmartLab Multipurpose Diffractometer indicated that the pres-

ence of any crystalline impurities was unique to the surface of the crystals as surface

treatment led to a reduction of secondary peaks, as shown in Figure 3-6; which is in good

agreement with the work of others,140 and the predicted patterns in Figure 3-2. Unfortu-

nately, further analysis proved the presence of tin iodide to be more persistent.

Figure 3-6: Grazing incidence XRD on the surface of single crystal SnS before and after
exfoliation and cleaning processes. It can be seen that secondary peaks above 40 ◦ and
below 20 ◦ disappear and the sharpness of the major SnS (400) peak increases for treated
compared to untreated samples.

It was found later in the study that the single crystals synthesised using the method

described were not of sufficient purity to derive accurate data for transport properties.
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Subsequent analysis of single crystal SnS samples using glow discharge mass spectroscopy

(GDMS), a service provided by the ‘Evans Analytical Group’, revealed that the presence

of impurities in these samples was prohibitively high. The full data for this analysis can

be found in the Appendix, Table A.2, with a summary of highest concentration impurities

presented in Table 3.3. Here, it is possible to see that not only is there a persistence of

iodine in the sample, that can be ascribed to the chosen synthesis method, but also a large

concentration of heavy metal impurities that are most likely associated with the tin source.

Table 3.3: Glow discharge mass spectroscopy analysis of single crystal SnS, with impurity
elements arranged in descending order of concentration.

Element Concentration Atom mass Atom number Atoms per volume
(ppm wt) (g/mol) (ppm) (cm−3)

I 620.0 126.90 368.32 1.53×1019

Pb 280.0 207.20 101.88 4.24×1018

Sb 100.0 121.76 61.92 2.58×1018

Al 5.3 26.98 14.81 6.16×1017

Cl 2.4 35.45 5.10 2.12×1017

As such, a final batch of SnS was synthesised using the route described in Section

2.1.1 but this time using Alfa Aesar, Puratronic, tin shot, 99.9999 % (metals basis) as

the tin source. These higher purity crystals were used only for the Hall measurements

discussed in Chapter 5 of this thesis, whereas all alternate analysis implicitly considers

crystals that contain said impurities.

3.2 Density functional theory analysis

The unique crystal structures pertaining to the tin-sulfur-iodine-oxygen phase space were

identified from the inorganic crystal structure database (ICSD). DFT as implemented in

the Fritz Haber Institut ab initio molecular simulations (FHI AIMS) package,141 and the
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Vienna ab initio Simulation Package (VASP),142 were used to calculate the equilibrium

geometry and total energy for each structure. Each calculation was checked for conver-

gence with respect to electronic plane wave density and basis set to within 0.01 eV per

formula unit.

All calculations were performed in closed shell configuration (restricted spin), with

geometry relaxations undertaken using the Broyden - Fletcher - Goldfarb -Shanno (BFGS)

algorithm within FHI AIMS,143 and the Davidson algorithm within VASP.144 A force

convergence criterion tolerance in all cases of 0.01 eV per Å was employed.

3.2.1 Phase space analysis of tin sulfide

It is important to consider the entire phase space of tin and sulfur in order to be aware of

any possible phase impurities present in SnS, both in single crystals and thin-films.

Sn(II) has the electron configuration [Kr] 4d10 5s2 5p6 and forms stoichiometric SnS

that preferentially crystallises in the orthorhombic herzenbergite structure, with the space

group Pnma. In this structure, the Sn2+ ion coordinates to three S2– ions, with the Sn

5s2 lone pair occupying the last position of a tetrahedral geometry. Other phases of SnS

that are of interest are the rocksalt (RS) structure grown under epitaxial strain,145 the high

temperature orthorhombic structure,131 and the zincblende (ZB) structure first reported in

1962 from SnS evaporation onto rocksalt, with more reports occurring only recently.146,147

The spacegroup labels for the SnS phases correspond as follows: Pnma; the orthorhombic

ground state phase, Fm-3m; the rocksalt phase, Cmcm; the orthorhombic, high temperature

phase and the F-43m zincblende phase.

The different SnS lattice structures are shown in Figure 3-7 along with the ground

state structures of SnS2 and Sn2S3. The low energy phase of SnS2 (Sn4+) is a trigonal

structure composed of SnS2 trilayers where the Sn(IV) ion is coordinated to six S ions in an
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(a) SnS Pnma (b) SnS Fm-3m (c) SnS Cmcm

(d) SnS F-43m (e) SnS2 P-3m1 (f) Sn2S3 Pnma

Figure 3-7: the crystal structures of the tin (grey) sulfides (yellow) and the ground state
structures of SnS2 and Sn2S3.

octahedral environment, which is similar, for example, to that found in the 2 dimensional

semiconductor MoS2.148 Alternate stacking of the trilayers results in a series of structural

polytypes, as typified by the isostructural CdI2 system.

The crystal structure of tin sesquisulfide (Sn2S3) is also orthorhombic and shares the

same space group as the ground state phase of SnS. The structure is composed of Sn2S3

chains, with the Sn(IV) ions adopting chain-centre positions in octahedral coordination to

sulfur, and the Sn(II) ions adopting chain-end positions in the favoured trigonal-pyramidal

arrangement. Hence, the coordination preferences of both Sn oxidation states can be si-
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multaneously satisfied.

For the enthalpies discussed in this section, the atomic coordinates were fully allowed

to relax where ever possible, but in high temperature or highly strained configurations the

energy minimisation algorithm would cause the structure to deviate significantly from the

experimental geometry. In these cases, the unit cell volume was altered systematically

while the internal symmetry was fixed; extrapolation to the lowest energy allowed for the

ground state lattice vectors to be identified.

Table 3.4 contains the lattice parameters for the different tin sulfide, oxide and oxysul-

fide phases discussed in this section. For both VASP and FHI AIMS simulation packages

the ground state structure lattice parameters are in excellent agreement with experiment,

where the error is typically less than 2%. The Cmcm phase could not be stabilised as

it is a high temperature conformation that undergoes a second order phase transition to

the ground state Pnma structure, observed experimentally at around 878 K.149 A large

discrepancy is observed between the calculated and measured lattice parameters for the

zincblende F-43m structure, which will be discussed later in this section.

3.2.2 Enthalpies of formation & relative stabilities

Enthalpies of formation are key to understanding the relative stabilities of a multi-phase

system as they indicate which conformation the system would preferentially adopt. The

following results, obtained from DFT calculations, represent values at 0 K (excluding zero

point contributions), and do not account for any prohibitive kinetic barriers involved in

structural change according to their respective reactions.

The enthalpies of formation for tin monosulfide, shown in Table 3.5 agree well with

experiment whereas the formation enthalpies for SnS2 and Sn2S3 somewhat disagree. This

result likely reflects more on the difficulty of obtaining phase pure materials experimen-
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Table 3.5: Enthalpies of formation obtained at the PBEsol level of DFT, compared to
experimental data where available.

Phase Spacegroup ∆HDFT
f (eV) (kJ mol−1) ∆Hexp

f (kJ mol−1)
SnS Pnma -1.03 -99.35 -100 to -10899,161

SnS Fm-3m -0.95 -91.66
SnS F-43m -0.29 -27.80
SnS2 P-3m1 -1.36 -130.99 -148 to -182161–163

Sn2S3 Pnma -2.39 -230.35 -249 to -297161–163

tally than on the accuracy of the level of theory employed in this work, which is supported

by the large variation in the measured enthalpies of formation. As already stated it has

proven difficult to confirm the isolation of a pure single phase by diffraction techniques

alone (see, for example, Figure 1-11).

The calculated enthalpy of formation for individual phases plotted against elemental

composition affords a convenient method of comparing phase stabilities for any binary

state. A convex hull is a plot of this kind, with the lowest energy states connected to form

the base of a ‘hull’ and any higher energy states appearing above this line. The convex

hull for tin sulfide is shown in Figure 3-8.

A few anomalous results can be highlighted at this stage. Firstly, it is possible to

see that the Sn2S3 phase does not lie on the convex hull i.e the line connecting the SnS2

and SnS phases would pass below the obtained enthalpy of Sn2S3, by around 6 meV

quantitatively. This would usually indicate that Sn2S3 would rather dissociate into SnS and

SnS2, however, the prevalence and stability of the Sn2S3 crystals discussed in the previous

sections have led to this modified representation of the convex hull for its inclusion. It is

also important to note that a higher level of density functional theory that includes non-

local van der Waals interactions explicitly, may be necessary to accurately describe tin

sesquisulfide, and, as such, the proximity to the convex hull may be within associated

errors.164
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Figure 3-8: Plot showing enthalpy of formation from PBEsol DFT against atomic percent
of sulfur present in each phase. The convex hull indicates the ground state energy as a
function of sulfur composition.

Secondly, the enthalpy of formation for the zincblende phase of SnS is aberrantly

small. Figure 3-8 shows that ZB (F-43m) tin monosulfide should not be thermodynami-

cally accessible given that it resides so high on the convex hull. Considering that Cmcm

SnS does not form below 878 K,149 and is 0.236 eV above the ground state, it is possible

to predict that ZB SnS would correspond to an accessible phase at around 2760 K. By

contrast rocksalt Fm-3m SnS, while not the ground state, could still be thermodynamically

accessible at reasonable conditions.

The inherent instability of the ZB phase has been verified with alternate DFT function-

als (LDA and GGA) and both implementations (i.e. FHI AIMS and VASP). The calculated

energy-volume curve is shown in Figure 3-9 alongside that of rocksalt Fm-3m. The slope

of the curves represents the effective pressure of the system, i.e. P=−(∂E/∂V )T , which
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Figure 3-9: The energy-volume curve for zincblende (red) and rocksalt (blue) SnS, with
the reported lattice parameter of 5.845 Å highlighted with a vertical line (left) and a
structure of amorphous SnS obtained upon relaxation the ZB phase (right).146

for the observed ZB lattice parameter corresponds to an extremely large pressure of around

930 GPa , and can clearly not be representative of an equilibrium state. On the other hand,

it is important to note the similarity between the experimentally observed ZB lattice pa-

rameter and the relaxed rocksalt lattice parameter.

In order to confirm the dynamic phase instability of ZB SnS, ab initio molecular dy-

namics (MD) simulations were carried out within the Nosé-Hoover thermostat of the NVT

canonical ensemble. This approach combines DFT forces with classical Newtonian me-

chanics, and a time-step of 1 fs. The temperatures modelled were 300, 500, 700, and 1000

K over 5 ps and quenched directly to 0 K, by the standard local optimisation procedure. All

of these calculations lead to a spontaneous distortion from the high symmetry ZB phase to

an amorphous geometry, a typical resultant structure from which is shown in Figure 3-9.

The enthalpies of formation for these amorphous structures are included in the convex hull

for comparison (labelled ‘SnS (disordered)’ in Figure 3-8).

Three plausible explanations exist for this behaviour: (i) the phase found in experi-

ment is not ZB; (ii) the phase is formed in a highly strained environment; (iii) the phase is

stabilised by a high concentration of lattice defects. However, the predicted X-ray diffrac-
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tion patterns for rocksalt and zincblende SnS, at the same lattice spacing, are shown to

be almost identical, see Figure 3-10. These agree well with the experimental XRD on

ZB SnS obtained by Greyson et al. and with those obtained by Avellaneda et al. for

nano-particulate and thin-film ZB tin sulfide respectively.146,147 One can see that the peak

positions and the reflections associated with each are equivalent, due to the common fcc

crystal structure, and it would be possible to confuse the two. The preferential orientation

of crystals is not accounted for here due to the dependence of the growth process on nu-

cleation,165 but a powder diffraction pattern of each would show that ZB SnS exhibits a

stronger (111) reflection at 2θ =26.8 ◦, whereas rocksalt SnS would have a stronger (002)

reflection at 2θ =31.0 ◦. In previous work, the intensity ratios predicted for ZB SnS were

not used in ascribing the ZB structure from the diffraction pattern and this could be an

important consideration in distinguishing between the two phases.147

Figure 3-10: The predicted powder XRD patterns for rocksalt (blue) and zincblende (red)
SnS.

It would appear from this DFT analysis of the tin-sulfur phase space that good agree-

ment with experiment is obtained, with the exception of zincblende SnS, which is pre-

dicted to be thermodynamically and kinetically unstable. These predictions match previ-

ous calculations showing that Sn(II) in a tetrahedral environment with sulfur will form an
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Figure 3-11: The calculated structures of molecular Sn2S3, SnS2 and SnS, from left to
right, respectively.

asymmetric electron density i.e. an electron lone pair, due to orbital interactions (Sn 5s-

5p hybridisation).166 Indeed, evidence of lone pair formation can be seen in the apparent

cavity formation of the relaxed ZB structure of Figure 3-9, which is also seen for other

tin compounds.167 On the basis of the equivalent nature of reflections in the RS and ZB

diffraction patterns, it would appear most likely that the known rocksalt phase of SnS has

been mis-assigned as zincblende in recent reports.

3.2.3 Enthalpies of sublimation & disproportionation

Enthalpies of sublimation are important for materials processing methods, such as chemi-

cal vapour deposition, and post processing techniques, such as thermal annealing. Herein,

they are considered according to the following reaction: SnxSy(s) −−→ SnxSy(g) and are

displayed in Table 3.6.

While the structures of molecular SnS and SnS2 are trivial, the structure assumed

for the gaseous form of Sn2S3 was taken from an evolutionary algorithm search, which

showed it to be the only stable structure for 5 bonded atoms that allows for the two dif-

ferent oxidation states within one formula unit.168 The structure of SnS2 and SnS were

assumed to be linear, like that of CO2 and CO respectively, and are all shown in Figure

3-11.

The exceptional agreement observed for the sublimation enthalpy of SnS, alongside

that shown for the enthalpy of formation of SnS, reflect the suitability of the chosen simu-

lation methodology in this work.
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Table 3.6: Enthalpies of sublimation predicted by DFT, compared to experimental values
where available.

Phase Spacegroup ∆HDFT
sub ∆Hexp

sub
(eV) (kJ mol−1) (kJ mol−1)

SnS Pnma 2.28 219.96 220 ± 2163,169

SnS2 P-3m1 3.01 290.48
Sn2S3 Pnma 3.08 297.14

While the enthalpy of sublimation can be instructive, it has been observed that the

sesqui- and disulfide phases decompose before sublimation occurs, according to the reac-

tions163

2 SnS2(s)−−→ Sn2S3(s)+S(g)

and

Sn2S3(s)−−→ 2 SnS(s)+S(g).

The corresponding enthalpies of disproportionation are 0.16 eV (15.82 kJ mol−1) for

the SnS2 decomposition and 0.33eV (31.65 kJ mol−1) for that of Sn2S3. The enthalpy

changes as per these reaction pathways are much lower in magnitude than those for direct

sublimation, agreeing with the behaviour reported by others in the literature.163 However,

these results would indicate that the sesqui- and disulfide crystal phases would lose sulfur

over time, and decompose to SnS, whereas it is the tin monosulfide that is observed to

lose sulfur in this project. An explanation for this is that, while these reaction energies

are lower than those of sublimation, they are still many times greater than the thermal

energy at room temperature (2.47 kJ mol−1) and this method of DFT does not allow for

the quantification of prohibitive energetic barriers for reactions.
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3.2.4 Enthalpies of reaction with oxygen

The enthalpies for the direct oxidation of tin sulfide phases are shown in Table 3.7, to

highlight possible surface reactions upon exposure of tin monosulfide to oxygen or excess

sulfur.

Table 3.7: The enthalpies of oxidation for the reactions listed as predicted by DFT.

Reaction ∆Hox (eV) ∆Hox (kJ mol−1)
2 SnS+O2 −−→ 2 SnO+ 1

4 S8 -3.20 -308.58
SnS+O2 −−→ SnO2 +

1
8 S8 -4.09 -394.86

SnS2 +O2 −−→ SnO2 +
1
4 S8 -3.76 -363.22

2 SnS2 +O2 −−→ 2 SnO+ 1
2 S8 -2.54 -245.30

SnS+2 O2 −−→ SnSO4 -7.69 -742.26

The enthalpies of disproportionation that involve oxygen are also considered, in order

to account for the ambivalent nature of tin ions and are shown in Table 3.8. The addition

of sulfur to form Sn4+ is included for comparison.

Table 3.8: The enthalpies of disproportionation with oxygen, beginning with tin monosul-
fide, from DFT.

Reaction ∆Hox (eV) ∆Hox (kJ mol−1)
SnS+S−−→ SnS2 -0.33 -31.64
2 SnS+ 1

2 O2 −−→ SnO+SnS2 -1.93 -185.93
3 SnS+ 1

2 O2 −−→ SnO+Sn2S3 -1.93 -185.94
2 SnS+O2 −−→ SnO2 +SnS2 -4.42 -426.50
3 SnS+O2 −−→ SnO2 +Sn2S3 -4.42 -426.51

The reaction enthalpies implicitly assume an oxygen partial pressure of 1 atm. While

this level of theory is known to over-stabilise the O2 molecule,170 the energetic effect is

much smaller than the values presented here.

The above results indicate that oxidation of tin sulfide is a favourable, exothermic reac-

tion. It is also possible to see the relative preference of tin to fully oxidise to SnO2. From
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this, one would expect that any tin sulfide sample exposed to air will contain a surface ox-

ide layer at least, corroborated by observations reported in the literature of oxygen within

tin sulfides, despite stringent counter-measures put in place.95

There are two sets of identical enthalpies shown in Table 3.8, which can be shown not

to be an error, by noting that the difference between the reactions equates to the following:

∆H f (Sn2S3)-∆H f (SnS2)=∆H f (SnS)

This result implies that no energy is lost or gained in forming the mixed oxidation-state

sesquisulfide and is problematic for tin sulfide as it is likely that both SnS2 and Sn2S3 form

on exposure to oxygen.

Finally, the formation of a stable oxysulfide was found to be -7.69 eV (-742.26 kJ

mol−1), which is the largest favourable enthalpy reported thus far. This is significant as

it shows that oxygen uptake in SnS is thermodynamically favourable without any loss of

sulfur, which agrees with the TGA analysis presented in Section 3.1.1.

3.2.5 Enthalpies of reaction with iodine

The enthalpies of formation of the tin iodides along with several competing iodination

reactions are shown in Table 3.9. The enthalpies for reaction between iodine and all of the

tin sulfide phases are relatively low, but still thermodynamically stable. Consequently, it is

possible to predict that all single crystals produced by the CVT method will contain iodine

impurities to a certain degree, despite a small amount of iodine used in the synthesis.

In order to investigate the potential role of the presence of iodine on localised oxi-

dation, the overall ternary phase diagrams for the systems considered in this chapter are

shown in Figure 3-12. These diagrams contain all of the stable phases predicted using

the PBEsol level of the VASP implementation and are produced using the Computational

Phase Diagram Application of the Materials Project.171,172 It is important to note that
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Table 3.9: The enthalpies of iodination for the tin sulfide phases from DFT analysis.

Reaction ∆HI (eV) ∆HI (kJ mol−1)
Sn+ I2 −−→ SnI2 -1.44 -138.79
Sn+2 I2 −−→ SnI4 -1.49 -144.09
SnS+ I2 −−→ SnI2 +

1
8 S8 -0.41 -39.44

SnS+2 I2 −−→ SnI4 +
1
8 S8 -0.46 -44.75

SnS+ I2 −−→ Sn2SI2 -0.44 -42.64
SnS2 + I2 −−→ SnI2 +

1
4 S8 -3.09 -298.28

SnS2 +2 I2 −−→ SnI4 +
1
4 S8 -0.14 -13.10

Sn2S3 +2 I2 −−→ 2 SnI2 +
3
8 S8 -0.49 -47.24

Sn2S3 +4 I2 −−→ 2 SnI4 +
3
8 S8 -0.60 -57.84

while these do show some compounds not explicitly considered in the preceding discus-

sions there are no known ternary tin iodo-oxide compounds or quaternary blends of tin,

sulfur, oxygen and iodine. As such it is likely that the oxidation seen for SnS in this project

is not triggered by the localised presence of iodine from the CVT synthesis method.

3.2.6 Chemical reactions in potential device configurations

Simple thermodynamic arguments have been shown to play a fundamental role in the

design, optimisation and performance of solar cell devices, due to issues associated with

phase mixing and separation across interfaces.173 The instability of SnS with respect to

atmospheric and CVT synthesis conditions have already been presented, in this section

the stability of tin monosulfide in a hypothetical device configuration will be explored.

Evidence of metal disulfide formation at chalcogenide - metal interfaces has been pre-

sented in the literature,174 even for SnS itself.175 It has been established that these interface

impurities, even of the order of a few tens of nm, can affect the formation of an Ohmic

contact.176

In Chapter 1 the sustainability of SnS as an earth abundant material was established.

It would thus be self-defeating to seek device contacts for SnS that are themselves rare or
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Figure 3-12: The phase diagram for Sn - S - I (top) and the phase diagram for Sn - S - O
(bottom) configuration space from PBEsol level of the VASP implementation.
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expensive. Four metals are explicitly investigated as device contacts for tin monosulfide in

this thesis, which are molybdenum, tin, titanium and tungsten. As such, the possibility of

the formation of relevant disulfides is explored in this section by calculating the enthalpies

of degradation reactions shown in Table 3.10.

Table 3.10: Thermodynamic equations for the metal sulfide formation and their calculated
enthalpies.

Reaction Enthalpy of reaction ∆Hr

(eV) (kJ mol−1)
Mo(s)+ 1

4 S8(g)−−→MoS2(s) -3.02 -290.98
Sn(s)+ 1

4 S8(g)−−→ SnS2(s) -1.36 -130.99
Ti(s)+ 1

4 S8(g)−−→ TiS2(s) -4.15 -400.78
W(s)+ 1

4 S8(g)−−→WS2(s) -2.82 -271.69
Mo(s)+2 SnS(s)−−→MoS2(s)+2 Sn(s) -0.96 -92.28
Sn(s)+2 SnS(s)−−→ SnS2(s)+2 Sn(s) 0.70 67.71
Ti(s)+2 SnS(s)−−→ TiS2(s)+2 Sn(s) -2.09 -202.09
W(s)+2 SnS(s)−−→WS2(s)+2 Sn(s) -0.92 -88.37

Several interesting points can be discerned from these results. The first is the formation

enthalpy for the metal sulfides is the least negative for tin sulfide than any of the disulfides

assessed. This is reflected in the explicit contact/SnS reaction scheme, showing that degra-

dation is only thermodynamically unfavourable for tin. The important conclusion therefore

is that, excluding kinetics, all tin sulfide devices fabricated to date with molybdenum will

develop an MoS2 intermediate layer (including the champion device).82 Whether this is

beneficial or harmful in this case remains to be seen. For example, it is known that MoSe2

has a beneficial effect in CIGS cell performance, as such, the formation of an interlayer is

itself no reason to discount a possible Ohmic contact formation.176 An attempt to clarify

the likely effects of these predictions are reported in the later chapters of this thesis.
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3.3 Results comparison & discussion

This chapter has shown both the degree of overlap between the remits of theory and ex-

periment and the predictive power of DFT.

The thermodynamic calculations show exceptional agreement with observed structural

parameters for the tin sulfide family of compounds with the exception of zincblende SnS.

The ZB tin monosulfide appears unusually high in energy and spontaneously distorts when

allowed to relax even at room temperature. The similarity between the RS and ZB XRD

patterns lead to the conclusion that ZB SnS is in fact mis-assigned RS SnS.

Despite the reduction of complexity represented by eliminating the possibility of the

presence of a phase of SnS, it should still be noted that rocksalt SnS could be present in

films or at device interfaces, given that it is known to form under epitaxial strain.131 This

is significant as it is predicted to have topologically insulating properties that would harm

the rectifying behaviour required for solar cell operation.177 Besides this, the predicted

diffraction patterns highlight possible difficulties in characterising sample purities and

structural uniformity in tin sulfide samples. To fully ensure the phase purity of thin films 2-

dimensional mapping techniques could highlight regions of off-stoichiometry, while depth

profiling techniques could investigate the presence of interlayers.

The calculations present in this chapter also aid in the understanding of the behaviour

for the ground state single crystals. The thermodynamic calculations support the observa-

tions of degradation of SnS in the presence of oxygen and the persistence of iodine from

the CVT method. Unfortunately the mechanism for progressive sulfur loss from the tin

monosulfide phase at room temperature has yet to be identified.

The DFT derived enthalpies of iodination allow for a greater scope of optimisation of

the CVT method. The slightly stronger preference for SnS2 to form a tin iodide phase,
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shown in Table 3.9, indicates that these crystals ought to be cooled quickly from above

the boiling temperature of tin iodide in order to keep these phases as separate as possible.

Interestingly, the fact that all of the iodination enthalpies are favourable means that the

final tin sulfide formation step of the CVT synthesis is endothermic. As a result, it is

possible to predict that reversing the temperature gradient, after the formation of the tin

iodide, should yield a more rapid synthesis for all phases.

The DFT results are able to go beyond the isolated crystal system and predict that,

even in typical solid state device configurations, chemical degradation is likely to occur.

Interestingly the only scenario in which degradation is predicted to not occur is with SnS

in contact with tin metal, a contact that has yet to be trialled in the literature.

An important conclusion from these results is that chemical vapour transport is a po-

tentially inferior single crystal synthesis technique, due to the presence of carrier agent

found in the crystals, compared to, for example, the Bridgman-Stockbarger method that

does not require a carrier agent. That said Bridgman-Stockbarger does require a crystal

seed to trigger the onset of crystal growth. A potential solution to this problem is to use

high purity CVT synthesis to yield a crystal that was subsequently cleaned and polished,

to act as a seed for further crystal growth using the Bridgman-Stockbarger method. This

tandem technique could significantly reduce the potential for impurity incorporation in to

the phase pure crystals that were observed in the GDMS analysis for the CVT crystals in

this project.
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Chapter 4

Electronic & optical properties

In this chapter the opto-electronic properties of several relevant semiconductors are con-

sidered, which, ultimately, define the photovoltaic performance of a given material. As

well as analysis of SnS itself, studies on the impurity phases and potential device contacts

are presented. Possible origins of poor PV performance of SnS are identified with both

experimental and computational electronic structure analysis.

4.1 Single crystal analysis

This section details the results obtained from the analysis of the single crystals synthesised

using the methods discussed in Chapter 2. Specifically, the band gaps, work functions and

optical absorption data for the tin sulfide phases are presented.

4.1.1 Single crystal band gaps from reflectivity

The difficulty in ensuring that SnS samples are phase pure has been shown already in

this thesis, along with the calculated instability of SnS with respect to disproportionation
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Table 4.1: Reported optical band gaps of the tin sulfides from thin-film and single crystal
samples. The type of band gap used in the fitting process is shown in parenthesis.

Phase Reported optical band gap (eV)
SnS 0.9 - 1.1 (indirect);179 1.08 (indirect);64 1.27 (allowed indirect);134 1.32 (direct);180,181

1.43 (direct);92 1.70 (direct);83,182 1.79 (direct).183

SnS2 1.82 (forbidden indirect);184 2.07;185 2.2 (forbidden indirect);186 2.41 (not defined).187

Sn2S3 0.95eV (forbidden direct);188 1.05 (forbidden direct);186 1.16 (forbidden direct);189

1.6-1.9190 2 (direct);191 2.2 (indirect).192

both in atmospheric conditions and a device configuration. While it is possible that precise

control of sulfur content during synthesis could avoid this occurrence for SnS, such control

was not sufficient in preventing off-stoichiometric phases of FeS2 forming for example;

another earth abundant material that has so far failed to deliver as a PV absorber layer, as

discussed in Section 1.4.47 In this chapter, the degree to which the presence of impurities

would be problematic for photovoltaic applications has been investigated.

The physical appearance of the single crystals suggests band gaps close to the IR region

of the electromagnetic spectrum for SnS and Sn2S3 (i.e. black) and a larger gap closer to

the UV region for SnS2 (i.e. yellow). As such, it could be that the reported brown colouring

of SnS thin films and powders in the literature is in fact a mixture of the dark SnS/Sn2S3

and the lighter SnS2.178

Previous experimental measurements of the band gaps for each of the tin sulfide mate-

rials are collected in Table 4.1, showing that values are wide-ranging: 1.08 - 1.79 eV for

SnS, 1.82 - 2.41 eV for SnS2 and 0.95 - 2.20 eV for Sn2S3. In addition to the methods of

synthesis for the materials, variation can also be attributed to the fitting process, where the

optical absorption spectrum is subject to a linear fit and extrapolation.

Each of the three single crystals from this study were analysed by UV/vis spectroscopy

with a Shimadzu UV-2600 UV/Vis/NIR spectrophotometer between 400 and 1400 nm

wavelength light. The strongest onset of absorption or sudden decrease in reflection can
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Figure 4-1: Ultraviolet-visible reflectance spectroscopic analysis of SnS (left), Sn2S3 (cen-
tre) and SnS2 (right), showing change in reflectance as a function of incident photon en-
ergy.

be extrapolated to find the optical band gap of the material, given that above the energy

of the band gap photons can promote electrons across said gap. SnS has an extrapolated

band gap value of 1.47 eV, Sn2S3 has a value of 1.20 eV and SnS2 has a value of 2.42 eV,

as shown in Figure 4-1 a, b and c respectively. Dispersions in reflectance above the band

gap, observed particularly for SnS and Sn2S3 in these experiments are attributed to defects

and impurities in the solid.193

The band gap values agree with the appearance of the crystals and the literature data

presented in Table 4.1. Given that a high carrier concentration leads to high reflectance,99

the data qualitatively indicates that SnS2 contains fewer impurities than the other phases;

an intriguing result given that each of the three crystals were synthesised using the same

method and iodine carrier. Indeed, it is possible that a high susceptibility to intrinsic defect

formation for SnS explains the high reflectance. SnS also has a larger refractive index than

SnS2, which could contribute to the higher sub-band gap reflectivity observed for SnS in

these experiments.193 It is worth noting that tin dioxide has a lower refractive index than

tin sulfide and, as such, surface oxidation is not likely to be the cause of this high degree

of reflectance.194
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4.1.2 SnS band gap from optical absorption relative to temperature

In this section, the optical properties of tin monosulfide are reported as a function of tem-

perature. These results allow for the assignment of SnS as either a fundamentally direct or

an indirect band gap material, as well as allowing for a more direct comparison with the

results of DFT, which implicitly correspond to a material at 0 K.

Fourier-transform infra-red (FTIR) spectroscopy was performed using a Bruker Vertex

70v Fourier transform IR spectrometer using a NIR source, a CaF2 beam-splitter with both

an InGaAs and HgCdTe diode detector and a 1.5 mm instrumental aperture cooled with

liquid helium on a single crystal of SnS.

The optical absorption coefficient, which is an indication of how strongly a material

absorbs light as a function of photon energy, for temperatures between 4 and 350 K, was

determined using transmittance, T , reflectance, R and crystal thickness d data, via the

relationship,195

α =
1
d

ln

[
(1−R)2 +

√
(1−R)4 +(2RT )2

2T

]
(4.1)

The results of this experiment are shown in Figure 4-2, with the corresponding band

gaps from linear extrapolation of the absorption profiles shown as a function of tempera-

ture in Figure 4-3.

The temperature dependent absorption shows a trend of increasing band gap with in-

creasing temperature before the onset of indirect absorption reverses the trend, which

agrees well with the work of others.196 The highlighted change in the direction of the

trend for absorption as a function of increasing temperature is indicative of a direct band

gap of SnS at around 1.21 eV at 0 K. As a greater number of crystal phonons become active

in the material, new optical absorption transitions across the band gap become accessible
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Figure 4-2: Absorption coefficient as a function of photon energy profiles varying with
temperature for SnS single crystals with the InGaAs detector.

and the band gap begins to decrease after around 50 K. At around 300 K, an indirect fun-

damental band gap of 1.14 eV is observed for both detectors, which agrees with the room

temperature data from the literature shown in Table 4.1.

The absorption coefficient data agrees well with the optical properties reported for

SnS thin films,195 and the high peak of around 9× 104 cm−1 also agrees with the work

of others.197 It should be noted that the optical properties of materials with indirect band

gaps are known to depend on temperature, despite observations to the contrary for SnS

thin films.198

The linear dependence of band gap on temperature above 100 K here, yields a rela-

tionship −0.4 meV K−1 between 125 and 350 K, which is in excellent agreement with a

variation of −0.405 meV K−1 reported for 100 to 300 K in the literature.128

Despite the peak in band gap observed by both detectors at 1.24 eV for around 50

Kelvin, the 300 K band gap of 1.14 eV is still more optimal than that of silicon, another

indirect absorber, for PV applications. Despite these factors, silicon is able to reach over

20 % in modern device architectures as discussed in the Introduction, more than 6 times

the current record for SnS.
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Figure 4-3: Observed SnS band gaps as a function of temperature recorded with an InGaAs
detector (left) and HgCdTe detector (right).

The results in this section have shown that SnS exhibits high optical absorption and

ideal band gaps across a wide range of temperatures. While these measurements are in-

sightful, they do not allow for the identification of any major efficiency loss mechanisms

for SnS PV. As such, the parameter that allows for the relative placement of the energy

levels of both SnS and the competing tin sulfide phases is sought: the work function.

4.1.3 Evaluation of work function & band gaps for all phases

X-ray photoelectron spectroscopy (XPS) is a technique that allows for composition anal-

ysis of solids and was performed using a Mg-Kα anode with 144 W of power, in order

to analyse the surfaces of the crystals. Binding energies were obtained with an initial low

resolution survey up to 1100 eV and a subsequent high resolution sampling of key regions.

The results of this analysis directly affected the procedure for subsequent ultraviolet pho-

toelectron spectroscopy (UPS) and inverse photo-emission spectroscopy (IPES) analysis.

UPS measures kinetic energy of emitted photoelectrons using, in this case, a helium

lamp with a survey region between 10 and 22 eV, and allows for the identification of a
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Figure 4-4: Band edge analysis with UPS and IPES, where the numbers indicate the posi-
tion of the energy band relative to the vacuum level.

Table 4.2: UPS/IPES determined properties for the tin sulfide phases.

Property (eV) SnS SnS post-anneal SnS2 Sn2S3
Electron affinity -4.12 -4.27 - 3.50 -3.17
Work function -4.56 -4.24 -4.36 -4.13
Ionisation potential -5.44 -4.82 -5.98 -4.69
Band gap 1.32 0.55 2.47 1.79

material’s Fermi level with respect to the vacuum level, or ionisation potential. IPES on

the other hand, measures the kinetic energy of radiative processes of absorbed electrons,

using a 1.04 filament current, giving 4 µA flux at 10 eV kinetic energy and allows for

the deduction of a materials electron affinity by filling previously empty electronic states.

The combination of these properties allows for the construction of an energy band diagram

for each tin sulfide phase, as shown in Figure 4-4, with the corresponding values listed in

Table 4.2.

The XPS analysis revealed the presence of tin oxide in each of the three samples and

elemental iodine adhered to the surface of the SnS crystal. The observation of iodine con-

tamination of the SnS led to the deployment of an anneal procedure, subjecting the crystal

to 300 ◦C for 10, 5, 25 and 15 minutes, in an attempt to remove the iodine. Unfortunately,
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the anneal resulted in an almost metallic surface, as shown by the diminished band gap in

Figure 4-4, without fully removing the iodine present. This is indicative of an ease of loss

of sulfur in tin monosulfide, first observed in the previous chapter; see Section 3.1.1. The

full data for XPS composition analysis can be found in the Appendix, Table A.3.

The band gap for SnS is close to the literature value for the direct band gap and is close

in value to that found from UV/vis analysis, as is that of SnS2. The band gap for Sn2S3 is

larger than that observed in the UV/vis analysis and is likely due to surface oxidation or the

presence of SnS2 impurities. Both UPS and IPES are sensitive to surface contamination,

typically limited to 5 atomic layers analysis depth.199

Sputtering with an ISIS 3000 Ar+ ion sputter system, with an argon overpressure of

6×10−6 mbar for ten minutes was found to be ineffective in removing adventitious carbon,

which is problematic as the UPS measures the smallest work function of a surface, no

matter how small the area with this work function.

A previous photo emission measurement placed the work function of SnS 4.2 eV below

the vacuum level for a (001) terminated single crystal,200 and SnS2 has been reported to

have an electron affinity of -4.1 eV,201 both of which are in good agreement with the

results presented here. However, the Fermi level for the SnS result was reported near the

conduction band, which for an intrinsically p-type material suggests significant surface

band bending (electron accumulation) or impurities present. As such, it is more probable

that the larger work function seen in this thesis, better reflects the true nature of SnS. Little

data exists in the literature on the electronic energy levels present in Sn2S3.50

4.2 Density function theory analysis

The UPS/IPES analysis reported previously, highlighted the difficulty in arriving at ac-

curate opto-electronic properties for a multiphasic system such as that of tin sulfide. In
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this section, the results obtained from DFT simulations are presented to compare directly

with the experimental measurements. This work begins with the electronic structure, band

gap and work function of SnS, continues to consider the properties of the alternate phases

and then concludes by suggesting optimal PV device contacts for SnS, by building on the

results presented in Section 3.2.6.

4.2.1 Band gaps & work functions for all phases

For the following calculations the structural parameters were held fixed at the experimen-

tally determined values detailed in Section 3.2.1, in order to avoid errors due to the van der

Waals interactions, which are small but not negligible for these pseudo-layered structures.

The band gaps resulting from hybrid calculations performed with the VASP code with a

400 eV plane wave cut-off and the HSE06 functional, are 1.11 eV for SnS, 1.09 eV for

Sn2S3 and 2.24 eV for SnS2. All of these band gaps are indirect in nature and agree well

with the band gaps reported in the literature (Table 4.1) and those found by single crystal

analysis. These results support the conclusion that the relatively large band gap found for

Sn2S3 in the UPS/IPES analysis is due to the presence of surface impurities.

In order to align the electronic band energies to the vacuum level, the non-polar (001)

surface of SnS, a reconstructed (001) surface of Sn2S3, and the (001) surface of SnS2

were used as surface slab models with a 15 Å vacuum spacing. The slab thickness was

rigorously checked for convergence with respect to the vacuum potential. These surfaces

correspond to the known dominant terminations for SnS and SnS2, with little information

available in the literature for Sn2S3.50,202

The mapped electrostatic potential including the reference energy vacuum level is

shown in Figure 4-5. For SnS, the associated surface ionisation potential is calculated

to be -4.67 eV, -4.69 eV, and -4.70 eV for 2, 4, and 8 atomic bilayers, respectively. With
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Figure 4-5: Cross section of the calculated electrostatic potential for a (001) terminated
slab of SnS.

further increases to the calculation size providing no further change in energy i.e the 8-

bilayer slab is fully converged. For SnS, the contribution of the surface to the calculated

ionisation potential is found to be small, that is to say that when the vacuum level is aligned

to the core level energies in the centre of the slab, rather than the valence band maximum

directly, the ionisation potential is not modified to within 0.02 eV.

Again, the derived valence band maxima, conduction band minima and vacuum poten-

tials allow for the construction of a band offset diagram for each of the tin sulfide phases,

which is shown in Figure 4-6. The reported values for the successful photovoltaic ma-

terial CZTS are included for comparison. SnS and Sn2S3 are both reported to be p-type

semiconductors;203 hence, the equilibrium Fermi level will be placed close to the valence

band edge, and the work function and the ionisation potential should be close in energy.

Conversely SnS2 is reported to be an n-type material,185 meaning that its work function

will be close in energy to its electron affinity.

The predicted ionisation potential of SnS is lower than that typically found for metal-

chalcogenide semiconductors,205 which can be explained by the unusual coordination en-

vironment and inter-layer repulsion, caused by low binding energy Sn 5s2 orbitals. In

this lower oxidation state of Sn (i.e. 2+), the 5s2 orbitals are formally occupied, with the
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Figure 4-6: Calculated band offset diagram, using the HSE06 functional, for each of the
three tin sulfide phases, and that of CZTS for reference, using a vacuum level alignment
procedure.204

conduction band formed from the empty 5p band. The interaction of Sn 5s and S 3p re-

sults in anti-bonding states at the top of the valence band.206 In contrast, the ionisation

potentials of CdTe and CuInSe2 have been reported as -5.7 eV from UPS207 and HSE06

calculations.208 These values are also close to those found for CZTS and related selenide

materials.209

4.2.2 Band structure of SnS

It is possible to derive more detailed information about the energy bands of a solid from

DFT other than the band gap and work function. In order to fully understand the electronic

structure of SnS, additional factors must be taken into consideration. Firstly, it is common

practice to perform solid state calculations in reciprocal space as this allows for the repeat-

ing periodic functions in real space to be treated more easily in the frequency domain. Just

as with real space, a conventional unit cell can be defined in reciprocal space as having

no overlap with respect to translation when describing a periodic structure. The so-called

Wigner-Seitz cell about a lattice point in real space, is the region of 3D space that is closer

to that point than to any other lattice point. The first Brillouin zone is the Wigner-Seitz cell
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Figure 4-7: The Brillouin zone of the orthorhombic SnS system (left) and the correspond-
ing real space unit cell with the defined axes vectors (right).

of the reciprocal lattice, with the same symmetry operations of the conventional unit cell.

As such, it is possible to describe all of the electronic states in a solid within the Brillouin

zone. If this zone is sampled or mapped on to a 2-dimensional representation of energy

against zone coordinate, it is called a ‘band structure diagram’.

The optimal routes for sampling the Brillouin zone, that allow for the inclusion of

high-symmetry ‘special points’ and other key regions of the electronic structure, have

been specified for each different symmetry type.210 The Brillouin zone and the sample

path for SnS are shown in Figure 4-7, which are the coordinates directly mapped to the

band structures shown in Figure 4-8. The corresponding real space representation of SnS

is also shown in Figure 4-7, with an extended structure to highlight the pseudo-layered

nature of SnS. It should be noted that Γ-X, Γ-Y and Γ-Z paths in the Brillouin zone (and

the band structure) correspond to wave vectors in the a, b and c crystallographic directions

in real space, respectively.

Now it is possible to see in the first panel of Figure 4-8 that SnS exhibits a fundamental

electronic band gap of 1.11 eV in Γ-X that is spatially indirect, and a direct gap of 1.22
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Figure 4-8: Band structure analysis for SnS at the HSE06 level of theory. The high reso-
lution band structure showing a fundamentally indirect gap in Γ-X and a direct gap in Γ-Y
(left) and critical point transitions mapped on to the same band structure (right). The top
of the valence band is set to 0 eV.
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eV in Γ-Y. Conversely it is possible to see that Γ-Z has a large gap with a relatively flat

valence band maximum, given that the degree of dispersion of an energy band in a given

direction characterises the strength of the bonding interactions along that vector, it can

be said that the layers of SnS are weakly bonded. These results are significant as they

show that the photon absorption mechanisms for SnS will (at the onset of absorption at

least) occur in the bonding a, b plane, highlighted in Figure 4-7, rather than across the SnS

pseudo-layer. The band diagram of SnS agrees well with the work of others from similar

levels of DFT.211,212

4.2.3 Temperature dependent electronic structure of SnS

For the single crystal of SnS, a change in band gap was observed as a function of temper-

ature that indicated a possible switch in absorption mechanism. Density functional theory

calculations correspond to solids at zero Kelvin as neither thermal expansion nor electron-

phonon interactions are accounted for. As such, a method of approximating the effect of

temperature on the electronic structure of SnS was identified, in order to more fully explore

this relationship. Such calculations have proven insightful for the temperature dependent

properties of other chalcogenide semiconductors in the literature, for example PbTe.213

While the constant volume free energy of a system, Helmholtz energy (A), is given as

A(T,V ) = E0(V )+Uv(T,V )−T SV (T,V ) (4.2)

where E0 is the internal energy, Uv(T,V ) is the vibrational internal energy (which equates

to the zero point energy at zero Kelvin) and SV is entropy, only E0 is available directly

from DFT.

Phonons, or lattice vibrations, can be found from the changes in atomic forces from

the displacement of atoms in the system away from their equilibrium position. The forces
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are fitted to a harmonic potential energy surface in order to obtain force constants.

With the knowledge of the vibrational modes of a system, a partition function Z can be

found via

Z = exp(−U/kBT )∏
k,λ

exp(−ω(kλ )/2kBT )
1− exp(−ω(kλ )/kBT )

(4.3)

where U is a potential energy of the system, ω is the phonon frequency and the product is

over vibrational modes, λ , and reciprocal-space wave vectors, k. The free energy can then

be obtained by

A =−kBT logZ (4.4)

Within a harmonic potential, the only temperature dependence is from the phonon

occupation numbers, while the equilibrium distance between atoms is temperature inde-

pendent. Lattice thermal expansion, however, can be accounted for within the the quasi-

harmonic approximation, which assumes that phonon frequencies are volume dependent,

but that, at a given volume, the inter-atomic forces are still harmonic. It has been found

that thermal expansion can be accounted for within this approximation reasonably up to

half of the melting temperature of a material and, for SnS, a phase change is not observed

up to more than 878 K.149,214

A quasi-harmonic lattice dynamics calculation was performed by finding the phonon

density of states of SnS for a range of expansions and compressions around the 0 K (re-

laxed) volume. The constant-volume free energy for each expansion and compression is

evaluated as a function of temperature and energy - volume curves constructed, in order to

find the equilibrium volume according to an equation of state. For SnS, these are shown

in Figure 4-9,215 and the resulting unit cell volume as a function of temperature plot, is
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Figure 4-9: SnS free energy volume curves, showing the shift in supercell volume as a
function of temperature (left) and a temperature dependent band structure showing little
change of the electronic configuration with respect to thermal expansion (right), from 10
K in purple to 350 K in orange.

shown in Figure 4-10.

With the volume as a function of temperature identified, the band structure was cal-

culated following the previous procedure for the volumes corresponding to between 10

and 350 K in steps of 10 K. These band structures are collated in Figure 4-9, with the

corresponding band gaps shown in Figure 4-10.

The lower resolution of the band structure diagrams, shown in Figure 4-8, was nec-

essary in order to complete such a large number of calculations at the hybrid level, but

still show that the electronic structure is resilient with respect to change in thermal expan-

sion. Similarly, the band gaps in Figure 4-10 show a small, linear increase in energy as
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Figure 4-10: Temperature dependence of the SnS unit cell volume (left) and band gap
(right).

‘temperature’ increases.

It should also be noted that no negative frequency phonons were obtained in this treat-

ment of Pnma SnS, indicating that it is dynamically stable and, hence, the ground state

configuration of tin monosulfide.

4.2.4 Dielectric function of SnS

This section details theoretical work accomplished in collaboration with colleagues at

Pennsylvania State University in the USA, who successfully synthesised single crystals

of SnS using the Bridgman-Stockbarger method. These crystals were characterised by

colleagues at the National Renewable Energy Laboratory (NREL), also in the USA.216

See the Section Acknowledgements, for full details.

It is possible to calculate the frequency dependent dielectric matrix from the ground

state electronic configuration, i.e. the band structure presented in Figure 4-8. This property

details the anisotropic permittivity of a material with respect to charges generated under

illumination. It is calculated by the treatment of an independent particle promoted between

electronic bands and, as such, to ensure sufficient accuracy, the calculations included 240

bands, only 40 of which were occupied. Specifically, these parameters were calculated
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within the electric dipole approximation from the real and imaginary hybrid Kohn-Sham

eigenstates.

The frequency dependent dielectric function has two components, the real and the

imaginary functions. The imaginary part, ε2 is found by217

ε2(ω) =
4π2e2

Ω
lim
q→0

1
q2 Σc,ν ,k2wkδ (εck− ενk−ω)×

〈
uck+cα q|uνk

〉〈
uck+cβ q|uνk

〉
(4.5)

where c and ν refer to the conduction and valence band states respectively and uck is

the cell periodic part of the orbitals at the k-point, k, with a weighting factor, wk. ω is the

frequency of the incident photon, Ω is the volume of the unit cell and q is the Bloch vector

of the incident wave.

The real part of the dielectric tensor, ε1, is obtained using the Kramers-Krönig trans-

formation

εr(ω) = 1+
2
π

Pv

∫
∞

0

ε2
r (ω

′)ω ′

ω ′2−ω2 + iη
(4.6)

where Pv denotes the principal value and η is the complex shift.

The dielectric functions derived from theory and obtained for the single crystal SnS

using variable angle spectroscopic ellipsometry (J. A. Woollam Inc. M2000-DI model)

are shown in Figure 4-11. The agreement between the two is clear in each of the three

crystallographic directions a, b and c as labelled (see Figure 4-7)

The dielectric function, or permittivity, is defined as the measure of the resistance that

is encountered when forming an electric field in a medium. As such, the greater the value

of the dielectric the more stable the charge generated within a photoactive material upon

exposure to light. The static and high frequency dielectric constants are listed in Table 4.3
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Table 4.3: Calculated high frequency (ε∞) and static (ε0) dielectric constants of SnS (from
HSE06-DFT). The ionic contribution to the response (εion) is calculated using the phonon
dispersion from density functional perturbation theory.

Property εa εb εc

εion 21.36 37.64 22.72
ε∞ 12.70 14.02 11.85
ε0 = εion + ε∞ 34.06 51.66 34.57

along with the total dielectric resulting from the two. Here, it can be seen both with the

dielectric functions (real and imaginary), and the dielectric constants, that the permittivity

is greater along the b direction than in either a or c and would represent a preferential

direction of charge transport in tin monosulfide.

Furthermore, this close agreement between DFT and the variable angle spectroscopic

ellipsometry experiment allows for the direct mapping of key transitions on to the band

structure of SnS (Figure 4-8). This is possible as the second order differential of the di-

electric function allows for the identification of so-called ‘critical points’, which are shown

in Figure 4-12, with a reported total of 9 points from the experimental data. As these tran-

sitions are most likely to occur for high symmetry points in the Brillouin zone, it is possible

to then map the special points shown in Figure 4-7 back on to the single crystal dielectric

function, as shown in the first panel of Figure 4-11. In this way, high levels of agreement

and compatibility can be found between theory and experiment. At the very least, this

practice allows for the conclusion that the agreement between the chosen level of DFT

and single crystal experiments is high. It is expected therefore that properties derived from

the HSE06 functional for semiconductor materials are, to all reasonable approximations,

accurate.

The critical points mapped on to the direction dependent band structure highlight once

again that the majority optical activity occurs in the bonding plane, with few transitions

associated with eigenstates propagating in the c direction.
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Figure 4-11: Calculated and spectroscopically determined dielectric spectra for the three
principal crystallographic axes. Calculated data are presented along the top with single
crystal data along the bottom. The real part is labelled as εx1 and imaginary part as εx2
where x is the direction.

Figure 4-12: Real (red solid) and imaginary (blue dashed) second derivative dielectric data
indicating standard critical point line shapes by best fit. The energies of each critical point
are indicated by arrows and labelled in a numeric order.
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4.2.5 Absorption coefficient of SnS

For direct comparison with single crystal data, it is also possible to calculate the absorption

coefficient of a material based on the real and imaginary dielectric functions presented in

the previous section, according to

α =

2E
h

√
2

2

√
(ε2

1 + ε2
2 )

0.5− ε1

c
(4.7)

where c is the speed of light, h is Planck’s constant and E is energy.136 For the DFT di-

electric functions the calculated anisotropic absorption coefficient as a function of incident

energy is shown in Figure 4-13 for the a, b and c crystallographic directions. This yields

the expected steep gradient for photon absorption above the band gap value of SnS which is

in good agreement with experimental literature that shows optical absorption reach higher

than 105 cm−1 at greater than 1.5 eV.218

In this graph, it is possible to confirm the earlier prediction of stronger absorption in

the bonded plane (a and b) rather than perpendicular to it (c), as discussed in the previous

section, and also in Section 4.2.2.

The Python code written to produce the anisotropic absorption coefficient as a function

of incident energy, as shown here for SnS, can be found in the Appendix, Section A.4.

4.2.6 Assessment of potential device back contacts for SnS

Earlier in this thesis (Section 3.2.6), it was shown that SnS is likely to react with the much-

used back contact molybdenum. It has also been shown that SnS has a relatively low work

function compared to other photoactive materials. The final results section of this chapter

seeks to address the questions: is the reactivity of SnS limiting current device performance

and are there more suitable alternatives?
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Figure 4-13: Optical absorption coefficient derived from DFT, pertaining to the crystallo-
graphic axes as labelled.

Ample work in experiment has focused on the optimisation of the buffer layer, i.e. top

contact of SnS,177 while relatively little work has been done on the device back contact, a

device component of equal importance. One paper reports the use of copper as an electrode

in such a device,219 which, while desirable, due to abundance and cost factors, is likely

to result in the formation of a CuSnSx mixed phase instead. Besides this, the obtained

efficiencies did not offer an improvement over the use of standard contacts.220

Devika et al. showed that Al, In and Sn (but not Ag) all formed Ohmic contacts with

SnS,221 demonstrating a potentially fruitful avenue of device research as yet unexplored

for this material. Here the focus remains on Mo, Sn, Ti and W as contact metals as the

potential benefits of SnS are negated if rare or expensive elements are incorporated into

the same device.

Tin monosulfide is known to exhibit p-type conductivity,222 where the majority charge

carriers (holes) are collected at the back contact. As such, the work function of the back

96



contact for SnS must be smaller than that of SnS to allow proper extraction of holes.223

The earlier sections of this chapter have shown that SnS already has a relatively small work

function compared to CZTS and literature values of CdTe or CuInSe2.224 From this, one

can predict that molybdenum might be an unsuitable contact for SnS, despite the fact that

the record efficiencies for this material are published with this device architecture.225

While it was shown in Chapter 3 that the metals considered here, excluding tin, are

likely to form interfacial disulfide layers, the effect that these layers may have on device

performance is unknown. For example the presence of MoSe2 has shown to be beneficial

for CIGS cell performance, while the effect of MoS2 formation in CZTS devices remains

unclear.174,226

Metals are characterised by high conductivity and mobile electrons. The work function

of a metal is the difference between the Fermi level and the vacuum level, which deter-

mines the barrier hight at a metal-semiconductor junction. The calculated work functions

for the selected metals at three major crystallographic terminations are reported in Table

4.4, along with collected values from the literature. Agreement between experiment and

theory is found across these values, with the possible exception of that for polycrystalline

titanium metal. This could be explained by the presence of higher work function planes

in the crystal that are not accounted for here and the fact that (as seen in this report) it is

difficult to measure a work function accurately from surface sensitive techniques.

The electronic properties were also calculated for the metal disulfides, as shown in Ta-

ble 4.5, again with good agreement with experiment. In these calculations, the termination

is taken as the clean (001) as each disulfide forms a 2-dimensional structure with relatively

weak van der Waals layers in the c axis. The values of the work function for each of these

is greater in magnitude than either the work function of the metals shown in Table 4.4 or

those of SnS. As such, our results indicate that any disulfide inter-layers would behave as

hole blocking layers, preventing efficient charge extraction from SnS and limiting perfor-
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Table 4.4: Calculated work functions (φ ) for the corresponding metal surfaces at the
HSE06 level of theory. All values are in eV with respect to the vacuum level and are
compared with those in literature.99

Metal DFT Experiment (where available)
Surface Surface poly

(100) (110) (111) (100) (110) (111) crystalline
Mo -3.76 -4.82 -3.81 -4.53 -4.95 -4.55 –
Sn -4.96 -4.65 -4.49 – – – -4.42
Ti -3.23 -3.20 -3.25 – – – -4.33
W -4.26 -5.19 -4.07 -4.63 -5.22 -4.45 –

mance. All of these results are shown in alongside one another in a hypothetical contact

arrangement i.e with the disulfide placed between the SnS and metal, in Figure 4-14.

However, the nature of the metal disulfides is also of significance, as the conductivity

type places the work function of a material either close to the valence band maximum,

for p-type, or close to the conduction band minimum, for n-type, materials. MoS2 is

predominantly p-type,50 which places the work function of MoS2 more than 1 eV lower

than that of SnS. This would act to block hole extraction for SnS, but would form a non-

detrimental contact with CZTS, which has a predicted work function energy also around

1 eV below SnS (see Figure 4-6). This agrees well with alternate analysis for CZTS.226

WS2 is reported as n-type,50 which would oppose the rectifying behaviour needed in a

PV device and, combined with the favourable formation enthalpy of WS2 shown in Table

3.10 of the previous chapter, almost precludes tungsten as a suitable contact.

SnS2 is also known to be n-type222 but the results from earlier indicate that SnS2 would

not spontaneously form with SnS in contact with tin metal.

Finally, TiS2, is reported to be a semi-metal,227 which, itself, would pose no detriment

to the workings of a PV cell, however the energy levels are much too low to be suitable as

a contact in an SnS PV device.

If assessed purely by principles of band alignment, and excluding potential metal disul-
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Figure 4-14: Calculated band offset diagram, using the HSE06 functional, for hypothetical
tin sulfide contacts with indicated metal surfaces. The effect of any interfacial states is not
accounted for.
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Table 4.5: Bulk band gaps and ionisation potential for respective metal disulfides cal-
culated with HSE06. Note that the ionisation potential and work function for a p-type
material are close in energy, where the Fermi level lies at the top of the valence band.

Species Bandgap (eV) Ionisation Potential (eV)
Theory Exp. Theory Exp.

MoS2 0.93 1.29228 -5.77 -5229

SnS2 2.24 2.2186 -7.30 7.18230

TiS2 0.47 0.3231 -6.22 5.8232

WS2 1.63 1.4233 -5.49 5.1234

fide formation, SnS(100) would be most likely to form an Ohmic contact with the Sn(110)

surface. If one considers the thermodynamic driving force for contact degradation from

the previous chapter and the likely effect of such a reaction, tin also offers the most ideal

contact, as degradation is unfavourable. This prediction could pave the way for tin-only

devices, with tin metal, SnS, SnS2 and fluorine doped tin oxide forming a self-contained

device, easily synthesised and mass-produced.

4.3 Results comparison & discussion

The fundamental band gaps presented in this chapter, for each of the tin sulfides, are shown

in Table 4.6. It can be seen that the magnitude of the band gap is larger in experiment, for

each case, than is reported from the hybrid level electronic structure calculations. While

such discrepancies are often ascribed to the lack of thermal considerations in DFT, it has

been shown in this chapter that such discrepancies are unlikely to be due to the effects of

temperature. Instead, it is proposed that these variances are to be expected to a certain

degree, given that DFT provides the fundamental band gap directly, whereas experimental

methods rely on extrapolation after absorption or emission has already begun to occur.

While DFT predicts an increase in band gap with increasing temperature, in direct con-
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Table 4.6: Obtained fundamental band gaps of the tin sulfides using UV/vis, UPS/IPES
and HSE06 methods. All values are in eV.

Phase fundamental band gap
UV/vis UPS /IPES HSE06

SnS 1.47 1.32 1.11
SnS2 2.42 2.47 2.24
Sn2S3 1.20 1.79 1.09

tradiction to experiments that show the inverse relationship; this can be trivially attributed

to crystal phonons activating more optical transitions in the crystal. For SnS, the direct

band gap from theory (1.22 eV) and the 4 K band gap from the FTIR experiment (1.21

eV) show exceptional agreement with one another. Similarly, the indirect gap from DFT

(1.11 eV) and that of 300 K from FTIR (1.14 eV) also agree well. These two values are the

most directly comparable conceptually and their excellent agreement shows the suitability

of the chosen simulation methods in this project.

However, the suggested practice of extrapolating DFT-obtained band gaps to room

temperature values, outlined by Malone et al.,212 is flawed. The method does not account

for the change in direction of the onset of absorption that is observed in the single crystal

data below 100 K here, and, as such, is inapplicable to indirect band gap materials. That

said, the agreement between these different levels of theory, for the ‘0 K’ band gaps at

least, corroborate the HSE06 results in Table 4.6.

The results of this chapter also highlight the difficulties associated with relying on sur-

face sensitive techniques, i.e. UPS/IPES in this case, for obtaining bulk crystal electronic

properties. It has already been discussed that the placement of the Fermi level with respect

to the vacuum is dependent on the defect concentration, and defect type, within crystals

and thin-films. Without proper quantification of intrinsic and extrinsic defects of a system,

as well as their relative electronic effects, it is difficult to accurately report reliable results

for these techniques. Similarly, surface contamination, likely to occur almost immediately
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upon exposure to atmospheric condition for the tin sulfides discussed in this project, is

another source of uncertainty. However, the placement of the energy levels for the single

crystals do still indicate that the sesqui- and disulfide phases will hinder the photovoltaic

performance of SnS in a device, as do the results obtained from DFT.

According to the band edge analysis from the UPS/IPES method, Sn2S3 would act as

a hole trap, and SnS2 would act as both a hole and electron block if either were to occur

in localised regions of SnS bulk. As a 2-dimensional material, if SnS2 were to form as

a layer between the top or bottom contacts of SnS, then device performance would be

severely limited. Indeed, the formation of SnS2 interlayers between SnS and common

device components has been observed in the literature,175 and is of great concern for this

system.

From DFT, the lowest ionisation potential is found for SnS (Figure 4-6), with a mono-

tonic increase from Sn2S3 to SnS2. Similarly, the electron affinity increases from 3.59 eV

for SnS, to 4.16 eV for Sn2S3 and 5.06 eV for SnS2. This is a more intuitive result than

those seen from the single crystal analysis, as increasing the ratio of sulfur in the solid, a

more electronegative element than tin, allows for the material to hold its electrons more

strongly.

The calculations predict that the SnS/Sn2S3 and Sn2S3/SnS2 interfaces would form p-n

junctions of a staggered nature, driving the separation of electrons and holes. The local

presence of Sn2S3 would act as an electron trap, providing a reduction in energy in the

conduction band that would need to be again overcome before the electron could be ex-

tracted. The alignment between SnS and SnS2 is also problematic is it shows a so-called

‘broken gap’ heterojunction, indicating that spontaneous electron transfer would occur

from the valence band of SnS to the empty conduction band of SnS2.235 With respect to

solar cells, the presence of these impurity phases dispersed throughout an SnS layer (re-

ported by multiple authors)93,132,236–238 would decrease device performance by mitigating
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the desired rectifying behaviour across the cell. This could explain the limiting proper-

ties seen in PV cells as small-scale secondary phases and point defects have shown to be

of macroscopic importance for Cu2ZnSnS4 (CZTS) devices.58 As such, regardless of the

preferred method of analysis presented in this thesis, the interpretation is that the presence

of phase impurities ought to be suppressed as much as possible, in order to increase the

efficiency of SnS devices.

Perhaps of greatest importance is the relatively low ionisation potential of SnS com-

pared to other photo absorbers (e.g. CZTS). This result suggests that the valence band

and conduction band of SnS are mis-aligned with those of common contacts, as the va-

lence band energy of SnS equals the conduction band energy of CuInSe2 and approaches

the conduction band energy of CdS, according to literature values.224 As such, commonly

used contacts such as molybdenum might not allow the effective extraction of charges

necessary for PV performance.

It is possible that the formation of either SnS2 or MoS2 at device interfaces prevents

the efficient extraction of charges necessary to yield an acceptable photovoltaic efficiency.

Based on these findings; supported by both experiment and theory, it is possible to suggest

a hypothetical photovoltaic device architecture to negate the weaknesses identified. Such

a device ought to be made with tin as the contact metal, as this offers the best chance of

mitigating contact degradation and offers the optimal energy level alignment for reported

orientations of SnS.

While the presence of the sesqui- and disulfide phases in this report are treated as tin

monosulfide impurities, the band off-set diagrams in this chapter suggest that a thin-film

of Sn2S3 and SnS2 could form an ideal photovoltaic heterojunction. At the very least it

would appear that phase pure Sn2S3 should be further investigated as a photon absorbing

material, given that its band energy levels are in closer agreement with CZTS than those

of SnS.
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Finally, a novel prediction arising from this work is that the (010) terminated SnS thin

film would appear to be an optimal crystallographic orientation both in terms of optical

absorption and charge carrier diffusion. This concept will be further explored in the sub-

sequent chapter, however, in which charge transport will be explicitly investigated.
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Chapter 5

Transport & defect properties

This chapter begins with a summary of the reported transport properties of SnS, SnS2

and Sn2S3 from the literature and compares them with values obtained from single crystal

analysis. The latter parts of this chapter present novel interpretations of results from DFT,

in order to arrive at equivalent semiconducting properties. Once again, the comparison

between the literature, experiment and theory, allow for the exploration of both the validity

of selected theoretical methods and the properties of single crystals.

5.1 Single crystal analysis

5.1.1 Conductivity, mobility & related properties for all phases

Electrical resistivity is the degree to which a material opposes the flow of electricity. The

inverse of this parameter is conductivity, a high degree of which is desirable for a photo-

voltaic component, as it allows for a greater electric current to be extracted from a device

upon exposure to light.

Conductivity is proportional to the product of charge mobility and carrier concentra-
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tion, where the mobility describes how quickly charges can move through a material and

carrier concentration is the number of carriers in the valence and conduction band, from

p- and n-type defects, respectively.

It has already been mentioned that SnS is a natural p-type material with hole-mediated

transport. There is ample work supporting this conclusion in the literature; however, the

values of relevant conducting properties vary. Reported conductivities range from 0.03 to

0.077 Ω −1 cm−1,79,181 carrier concentrations from 1015 to 1018 cm−3, and hole mobilities

from 4 to 139 cm2 V−1 s−1,50,180,181,239

In contrast, SnS2 is known to be an intrinsic n-type material. Reported conductivities

range from 2× 10−5 to 0.90 Ω −1 cm−1,50,240 carrier concentrations from 1013 to 1017

cm−3, and electron mobilities from 15 to 52 cm2 V−1 s−1.50,240

Finally, Sn2S3 has also been reported as an intrinsic n-type material with conductiv-

ities around 10−3 Ω −1,191 carrier concentrations around 1015 cm−3,191 but with little

information available for charge carrier mobilities.50

All of these properties, listed in Table 5.1, are considered in this chapter, as it has al-

ready been established that multiple phases are likely to be present in a typical sample of

tin monosulfide, indeed, SnS2 impurities have even been observed in SnS samples only

30 nm thick.175 While a wide range of these values is perhaps to be expected, considering

the sensitivity of these parameters to synthesis conditions, there is still an underlying de-

pendence on intrinsic materials properties. For example, each of the tin sulfide phases is

expected to be anisotropic both in their crystal structure and electronic properties, and so

different sample orientations could be a cause of the high degree of variability observed in

charge mobilities in the literature.
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Table 5.1: Reported electron transport properties for the tin sulfides, corresponding to each
indicated reference.

Phase Conductivity Carrier concentration Mobilities Ref.
(Ω −1 cm−1) (cm−3) (cm2 V−1 s−1)

SnS 0.077 1.2×1015 500 79
0.069 1.16×1017 3.73 180
0.030 1×1015 139 181

– 1×1017 385 241
0.033 – 130 239

– 3×1018 90 64
SnS2 0.90 2×1017 51.5 50

2.4×10−5 1×1013 15 240
Sn2S3 4.4×10−3 9.4×1014 – 191

5.1.2 Pulse-radiolysis time-resolved microwave conductivity

In order to assess transport parameters for the single crystal tin sulfides, pulse-radiolysis

time-resolved microwave conductivity (PR-TRMC) measurements were performed. This

method relies on the fact that the formation of mobile charges induces a rise in the elec-

trical conductivity, which results in increased microwave absorption. The reduced amount

of microwave power is detected on a nanosecond time scale and allows for the characteri-

sation of conductivity.

In PR-TRMC experiments, charges are generated in the sample by irradiation with

high-energy electrons. The SnS, SnS2 and Sn2S3 samples consisted of micron-sized

crystallites that were diluted approximately ten times by mixing them with polymethyl-

methacrylate (PMMA) powder.

In order to measure the conductivity, the sample is inserted into a microwave con-

ductivity cell with the dimensions of a rectangular Ka band microwave wave guide. The

tin sulfide samples were irradiated with nanosecond electron pulses of 3 MeV. The inci-

dent high-energy electrons undergo scattering within the sample and transfer energy by
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inducing ionisations. In this way, a close to uniform distribution of holes and electrons is

produced. The penetration depth of 3 MeV electrons is approximately 1.5 cm, which ex-

ceeds the thickness of the microwave cavity (0.5 cm); hence, the incident 3 MeV electrons

pass through the sample and charging does not occur.

After the nanosecond electron pulse, the change in conductivity of the sample is probed

as a function of time by monitoring the attenuation of reflected microwave power between

a frequency of 28 and 38 GHz, with a maximum electric field strength in the sample of 10

V m−1. The fractional change in microwave power reflected by the cell (∆P
P ) is directly

proportional to the change in conductivity, ∆ σ , according to

∆P
P

= A∆σ = Ae∑
i

µiNi (5.1)

in which A is the sensitivity factor, N is the concentration of charges and µ their mobility.

The initial value of N can be deduced using dosimetry measurements combined with an

estimate of the average energy required to generate one electron-hole pair. Knowledge of

N allows quantification of µ .

Unfortunately, this method, when applied to SnS, did not allow for the extraction of

conductivity data, unlike for the single crystals of SnS2 and Sn2S3, which will be discussed

after the following analysis for SnS. The absence of data for SnS can be explained by a

high dark conductivity of the tin monosulfide crystals, i.e. the conductivity in the absence

of a pulse was too high to characterise a noticeable Fermi-level splitting when using the

microwave measurements. The origin of this behaviour is nonetheless still instructive as

to the nature of SnS.

Firstly, it should be noted that conductivity depends on carrier concentration, i.e. the

more defects present, the higher the carrier concentration and the higher the conductivity.

It should also be noted that a materials’ Fermi-level is defined as the energy up to which
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the population of states occurs. Where there is a distribution of states, i.e. all materials

above 0 K, the Fermi level is defined as the chemical potential of the electrons, which will

fall in the band gap for a non-degenerate semiconductor. If a material is highly defective,

it is said that the bands are no longer in equilibrium and carrier populations can no longer

be described by one Fermi level. Instead two Fermi levels are employed, one for the states

in or near the bottom of the conduction band and one for the states in or near the top of the

valence band. These are called quasi-Fermi levels and correspond to electrons and holes,

respectively.

The problem is that PR-TRMC and photovoltaic activity both depend on splitting the

equilibrium Fermi level to form these carrier quasi-Fermi levels upon exposure to light.

If they are already displaced from equilibrium by the presence of a high concentration of

defects, the illumination of a photoactive material in a device configuration will yield a di-

minished voltage.26 This effect can be seen schematically in Figure 5-1, where increasing

defect concentration further shifts the quasi-Fermi levels and restricts the voltage obtained.

Indeed, such a scenario agrees well with the relatively low voltage output observed for the

champion SnS cell.242 As such, SnS devices might benefit from a reduction of the intrinsic

conductivity, through control of the growth conditions or extrinsic doping.225

It is also possible that defects present in SnS, allow for exciton recombination via

trap states located within the band gap, i.e. Shockley-Read-Hall recombination. In a

particularly defective system with a high density of states within the band gap, it may

be possible for the system to resist perturbation from an outside stimulus, in this case an

electron pulse, via the recombination of existing free carriers. Such a scenario would yield

no net change in carrier concentration, or subsequent change in microwave absorption,

upon irradiation.

While the presence of extrinsic defects in these SnS samples was found to be high with

the GDMS analysis presented in Chapter 3, these are to be expected to be present in each of

109



Figure 5-1: Energy level diagram depicting relationship between quasi-Fermi levels and
maximum obtainable device voltage for a hypothetical intrinsic semiconductor. Increasing
defect concentration within the band gap decreases the splitting of the quasi-Fermi levels
and adversely affects performance. EV and EC are the energies of the valence band and
conduction band, respectively.243

the three phases, as discussed in Section 3.2.5. The fact that SnS is the only crystal phase

not to photo-excite during this analysis indicates that there is a large amount of intrinsic

defects present, which are not seen in the other phases, a conclusion corroborated by the

high reflectivity of SnS observed during the UV/vis analysis presented in Section 4.1.1. It

is important to note that the GDMS technique used to arrive at this conclusion (see Section

3.1.2), does not allow for the characterisation or quantisation of intrinsic defects in these

samples, which represents an interesting area of future research.

It may also be the case that the apparent tendency for tin monosulfide to lose sulfur over

time forms regions of tin metal in the sample. Any metallic phase present in PR-TRMC

analysis would allow for almost instantaneous charge recombination, and also lead to an

absence of observable signal.

Returning to the results from the sesqui- and disulfide phases, the data produced for

SnS2 and Sn2S3 is shown in Figure 5-2. It can be seen that from the onset of the pulse,

the signal rapidly increases due to the formation of mobile charge carriers. The maxi-

mum signal size can be converted into a mobility using Equation 5.1, yielding for both

materials a value of the order of 150 cm2 V−1 s−1. These are comparable to the highest
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Figure 5-2: Normalised PR-TRMC traces recorded for SnS2 and Sn2S3 using a pulsed 3
MeV electron beam, shown as a function of time.

values reported in the literature for these materials and suggest favourable properties for

PV applications (see Table 5.1).

Directly after the pulse a fast decay is observed for both semiconductors; however, the

decays are very different. The decay can be explained by the immobilisation of charge

carriers due to, for example, electron trapping. Alternatively, recombination of charge

carriers also leads to a reduction in signal size. For Sn2S3, the signal decays to almost zero

within a period of less than 50 ns. In contrast, the decay for SnS2 is far slower and extends

into the microsecond time scale.

The origin of the decay can be studied in more detail by changing the electron beam

dose and comparing the dose-normalised PR-TRMC traces, as shown in Figure 5-3. For

SnS2, the signal decreases more rapidly as the dose increases. This is a clear sign of

charge-carrier recombination according to second-order electron-hole kinetics. For Sn2S3,

the decay is independent of the dose, indicating that trapping or recombination is a first-

order process.
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Figure 5-3: Dose-normalised change in conductivity for SnS2 and Sn2S3. The x-axis
shows time in nano-seconds and the y-axis shows the fractional change in microwave
power reflected by the cell divided by the integrated beam charge per pulse (Q) in nano-
Coulombs.

At the lowest pulse of 2 ns, for SnS2, the lifetime (τ1/2) is 50 ns and the mobility

(µ) is around 150 V−1 s−1, giving a mobility-lifetime product of 7.5× 10−6 cm2 V−1.

For Sn2S3 τ1/2 is approximately 5 ns and the mobility is around 150 V−1 s−1, giving a

mobility-lifetime product of 7.5×10−7 cm2 V−1. These values are comparable with, but

somewhat lower than, those found for the successful photoactive material CdTe (7×10−5

cm2 V−1).244

The data for SnS2 in Figure 5-4, shows that the signals do decay to zero, but only on a

very long time scale. The low repetition rate of the accelerator of ca. 1 Hz would indicate

that no charge-carrier accumulation occurs, and therefore the long lifetimes are attributed

to the fact that the mobilities in different directions of the lattice are reported to vary by four

orders of magnitude.245 This large anisotropy in mobility arises from the two-dimensional,

sheet-like structure of the lattice in SnS2 crystals i.e. the interaction of the highly energetic

electrons of the accelerator pulse with the material induces the formation of charges over

separate bonded ‘sheets’. Since the charge transport perpendicular to the sheets is slow,
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Figure 5-4: SnS2 PR-TRMC signal decay as a function of time.

recombination of opposite charges is retarded, compared to that in an isotropic material.

Conversely, the rapid decay observed for Sn2S3 indicates a more isotropic conductivity

where charges are able to spatially recombine. This is yet another indication of favourable

properties for photovoltaic applications presented by Sn2S3.

5.1.3 Hall-effect mobility measurements

In the absence of conductivity data for SnS, alternate analysis methods were sought. It

was at this point in the project that all three of the crystal phases were found to be of

insufficient purity for accurate Hall effect measurements. As such, a new batch of SnS

crystals were synthesised using the same method as described in Chapter 2 previously, but

this time replacing the 99.9 % purity tin with that of 99.9999 % purity, and subject to Hall

effect analysis once again.

A Keithley 4200-SCS Semiconductor Characterization System was used with an Ap-

plied Magnetics Laboratory model # 4H2 Horizontal 2-Pole Adjustable Electromagnet in

order to arrive at Hall effect measurements. The results were interpreted using a custom
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LabView code developed by Christine Simmons and Rafael Jaramillo at the Massachusetts

Institute of Technology, USA. This yielded an average conductivity of 19.84 Ω−1 cm−1,

an average hole mobility of 95.35 cm2 V−1 s−1, and an average hole concentration of

1.287×1018 cm−3. The hole concentration agrees well with the hole concentrations of

around 1018 reported by Albers et al.,246 but the conductivity is one of the highest re-

ported for SnS to date.

It should be noted that the use of high-purity tin in the crystals, from which these Hall

effect measurements were obtained, is not expected to reduce the presence of iodine from

the CVT method that are observed in the GDMS analysis. As such, it is possible that the

relatively large conductivity is due to extrinsic factors,i.e. iodine, in this case.

The crystals were also polished and subject to Hall effect measurements according to

the orthorhombic system contact geometry of Montgomery,247 i.e. from two sample faces

with edges along the principal crystal axes. This allowed for the calculation of anisotropic

properties that yielded SnS conductivities of 8.929 Ω−1 cm−1 and 11.52 Ω−1 cm−1 in the

a and b crystallographic directions respectively. As such, using the equation

µ =
σ

Npe
(5.2)

where σ is conductivity, Np is the concentration of holes and e is the elementary charge,

the anisotropic hole mobilities are obtained as 68.5 cm2 V−1 s−1 and 88.4 cm2 V−1 s−1

along a and b respectively. This constitutes a mobility of around 29 % larger along the b

axis compared to that of a, which is in agreement with the observation of a larger dielectric

permittivity in the b direction for SnS, as presented in the previous chapter. It has also been

noted in the literature that mobilities in the c direction of the crystal are around six times

smaller than along either a or b, due to the weakly bound interactions between the covalent

layers.246
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The Hall analysis thus shows that SnS has favourable electrical properties for PV ap-

plications, but again, presents a high concentration of defects. As seen with the PR-TRMC

analysis, this is not entirely favourable and could be the cause of the low voltage observed

for SnS devices, while the obtained current remains fairly high.84

5.2 Density functional theory analysis

5.2.1 Intrinsic defect formation for all phases

The previous sections showed that carrier concentration is one of the major factors deter-

mining electrical properties and is itself dependent on the presence of defects. Density

functional theory allows for the explicit tendency of intrinsic defect formation to be calcu-

lated, which characterises both the degree and type of conductivity of a material.

The formation enthalpy of intrinsic point defects, tin and sulfur vacancies, was calcu-

lated using the supercell approach with the FHI-AIMS package.141 Lattice expansions of

(2× 4× 4), (4× 4× 2) and (2× 4× 1) were used for SnS, SnS2 and Sn2S3, respectively.

k-point sampling of at least 2× 2× 2 was performed, consistent with the length of the

reciprocal lattice vectors. The defect formation energies were calculated with respect to

the elemental standard states (Sn metal and solid S8) and the concentrations were calcu-

lated following the law of mass action, under the assumption of thermal equilibrium at the

growth temperature,248 according to the equation

N = niexp
−
(

∆H f
kBT

)
(5.3)

where N is the defect concentration, ni is the number of defect species sites per unit volume

in the crystal, ∆H f is the defect formation enthalpy, kB is the Boltzmann constant and T
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Table 5.2: Point defect formation energies and concentrations calculated assuming sulfur
rich growth conditions (atomic exchange with a reservoir of α-S) for the neutral defects
at the respective synthesis temperatures. Multiple inequivalent sites for defect formation
are distinguished with numerical subscripts. The type of the dominant defects is also
indicated.

Phase Spacegroup Species Formation energy (eV) Concentration (cm−3) Type
SnS Pnma VSn 0.68 2.28×1019 acceptor

Pnma VS 2.17 6.57×1012

SnS2 P-3m1 VSn 3.16 2.54×1004

P-3m1 VS 1.80 2.21×1012 donor
Sn2S3 Pnma VSn(1) 1.17 7.08×1014 acceptor

Pnma VSn(2) 2.68 2.04×1005

Pnma VS(1) 1.67 7.72×1011

Pnma VS(2) 1.38 5.13×1013 donor
Pnma VS(3) 1.77 1.63×1011

is temperature.249 Here, the temperature is chosen to be the synthesis temperature for the

relative phase presented in Chapter 2, as the defects are assumed to be ‘locked in’ once

cooled. These temperatures are higher than the anneal temperatures of typical SnS films

and represent a possible overestimation of the magnitude of the concentrations, as can be

seen by comparison with the values in Table 5.1.

In SnS, a fully ionised tin vacancy is associated with the generation of two positive

charge carriers (i.e. holes) and one sulfur vacancy is associated with two negative charge

carriers (i.e. electrons). These are expected to be the dominant native point defects, with

the tin vacancy long assumed to be the origin of the p-type conductivity of SnS,246 while

the sulfur vacancy is likely the origin of the n-type carriers in SnS2.

As shown in Table 5.2, the dependency of conductivity on defect stabilities is corrob-

orated and, by extension, allows for the prediction of typical charge-carrier concentrations

for each phase. The Sn vacancy has the lowest formation energy and highest concentration

in SnS, which is consistent with that being the dominant acceptor defect. The predicted
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high defect concentration agrees with the high Hall-effect conductivity measurements and

the absence of PR-TRMC results presented already in this chapter.

For SnS2, the S vacancy dominates, which is consistent with its observed n-type be-

haviour from charge-balancing considerations. Overall, SnS2 also shows a much lower

tendency to form intrinsic defects, which agrees with the UV/vis spectra discussed in the

previous chapter and with the PR-TRMC data presented in the previous section.

The Sn2S3 results elucidate the intermediate behaviour of a species containing both

Sn(II) and Sn(IV) oxidation states. For SnS and SnS2 the dominance of tin and sulfur va-

cancies, respectively, is unambiguous, which manifests as the observed longer carrier life-

times and a second-order decay behaviour for the SnS2 PR-TRMC analysis. Conversely in

Sn2S3, the formation energies of the two vacancy defects are close in energy, which indi-

cates that carrier concentrations should be sensitive to the growth or annealing conditions,

and, furthermore, that the major carrier type might be subject to change. This prediction

also explains the first-order recombination behaviour shown in the previous section, as the

high concentration of donor sites can effectively compensate the n-type carriers, and vice

versa.

5.2.2 Charge carrier effective masses

The effective mass of a charge describes the ease with which a charge carrier can move

through a material, with a heavier mass attributed to charges that move more slowly. It is

related to charge mobility by

µ =
q

m∗
τ (5.4)

where m∗ is the effective mass, q is the elementary charge and τ is the carrier lifetime.

It was mentioned in the previous chapter that the dispersions of the band structure in-
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dicate the strength of interaction in the same direction. BoltzTraP is a utility program that

interpolates the electronic band structure and can derive pertinent semiconductor prop-

erties for a given system using Boltzmann transport theory.250 To date, this code and the

underlying model has contributed to numerous projects, with over 300 citations at the time

of writing. BoltzTrap was used in conjunction with the electronic-structure module of the

pymatgen library in this project,251 in order to calculate transport properties from the DFT

band structure presented in Section 4.2.2. These codes assume an invariant band structure

with respect to temperature, which was shown in the previous chapter (Section 4.2.3) to

be a reasonable assumption.

In a simple parabolic band, the effective mass can be found by

m∗= h̄
δ 2E
δk2

(5.5)

i.e. the reduced Planck constant over the second derivative of the energy of the band,

E, with respect to the wave vector k. For holes, the highest occupied valence band is

used for E, whereas for electrons the lowest unoccupied conduction band is used. In most

materials, however, certainly in anisotropic materials like the tin sulfides considered in this

project, the effective mass is a tensor property, as bands can be non-parabolic and several

parts of different bands can contribute to conductivity. Fortunately, these complexities can

be accounted for within the semi-classical Boltzmann theory.252

The effective mass tensor, M, from a converged band structure calculation can be found

via,253

M−1 =
−∑i

∫
M−1(i,k) f (E(i,k),EF ,T ) dk

4π3

∑i
∫

f (E(i,k),EF ,T ) dk
4π3

(5.6)

where E is the energy of the ith band, f (E(i,k) is the Fermi-Dirac distribution and EF is
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the Fermi level, which is defined by,254

EF =
Ec +Ev

2
+

kBT
2

log
Nv

Nc
(5.7)

in which Ec is the energy of the conduction band, Ev is the energy of the valence band,

and Nv and Nc are the density of states of the valence band and conduction band, respec-

tively. EF can be found from the carrier density, N, via the density of states from the band

structure.

Using the value of the tin vacancy concentration for SnS, shown in Table 5.2, i.e.

2.28× 1019 cm−3, with the SnS band structure discussed in the previous chapter, yields

anisotropic values of the effective mass as shown in Table 5.3, from the BoltzTrap code.

These results show, once again, a strong preference for charge transport in the b direction

for holes, which is commensurate with earlier observations from this and the previous

chapter.

The defect concentration used in this case, is somewhat larger than the carrier concen-

trations typically reported, likely due to the explicit assumption of complete ionisation of

defects in this model and the relatively high synthesis temperatures in this case. As such,

it is expected that the effective masses are somewhat underestimated compared to those

in the literature. That said, experimentally determined effective masses for holes along

the b crystallographic orientation are also of the order of 0.2 m∗p, from carrier reflectivity

measurements.50 These results are commensurate with earlier observations from this and

the previous chapter.

5.2.3 Charge carrier mobilities

Mobility is the second component of conductivity, alongside carrier concentration. Now

that the anisotropic effective masses have been obtained from the previous section, it is
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Table 5.3: Charge carrier effective masses for SnS obtained from the semi-classical Boltz-
mann transport analysis of the DFT band structure.

Property a b c
hole effective mass (kg) 9.869×10−31 1.418×10−31 1.340×10−30

relative hole effective mass m∗p 1.083 0.156 1.471

possible to arrive at an anisotropic value of free carrier mobility, entirely from ab initio

methods. The procedure for arriving at such a value is a sum of charge scattering phenom-

ena, according to the following equation

1
µ
=

1
µi

+
1
µl

+
1
µg

+
1
µn

(5.8)

where µi is the ionised impurity scattering, µl is the lattice vibration scattering, µg is the

grain boundary scattering and µn is the neutral impurity scattering.

The ionised impurity scattering is given by

µi =
3(εvε∞)

2h3

Z2m∗2p e3Fi(ξ )
(5.9)

where εv is the permittivity of free space, ε∞ is the high frequency dielectric constant, h is

Planck’s constant, Np is the carrier concentration, e is the elementary charge and Z is the

charge of the impurity. The anisotropic values of the high frequency dielectric constant,

or the value of the real dielectric constant at zero frequency, were shown in the previous

chapter to be 12.70, 14.02 and 11.85 for the a, b and c directions.

Fi is given as

Fi(ξ ) = ln(1+ξ )− ξ

1+ξ
(5.10)

where ξ is
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ξ = (3π
2)1/3 εvε∞h2N1/3

p

m∗pe2 (5.11)

ξ is anisotropic due to the directional dependence of the effective mass and the dielectric

constant, ε∞, and is derived under the assumption of a degenerate semiconducting system

i.e. one with high doping. This is called the Brooks-Herring-Dingle model,136 and, for

SnS, allows for the values µi along the a, b and c directions to be found as 1.88×10−3,

2.36×10−2 and 1.37×10−3 m2 V−1 s−1 respectively.

Increasing temperature means stronger lattice vibrations, deformation of the lattice and

limitation of charge mobility by acoustic phonon scattering. J. Bardeen and W. Shockley

calculated the mobility arising from lattice scattering (µl) in non-polar materials as:255

µl =
2
√

2πeh̄4Cl

3m5/2
e E2

d(kBT )3/2
(5.12)

where Cl is the longitudinal elastic constant, Ed is the deformation potential, h̄ is h/2π and

T is the absolute temperature of the semiconductor.

DFT (specifically the VASP implementation of structure optimisation) allows for the

calculation of a materials elastic constants as a stiffness tensor Ci jk... where i jk are 1,2...6

corresponding to a system of axes fixed in space. This is achieved by performing six finite

distortions of the lattice and deriving the elastic constants from the strain-stress relation-

ship,256 in a similar way to the lattice relaxation as discussed in Section 2.2.3.1. The sym-

metry of the SnS lattice structure reduces the number of independent elastic coefficients

to nine, yielding the tensor
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Table 5.4: Data used for the calculation of deformation potential of SnS, where the work
function is equated to the ionisation potential.

Volume fraction Volume (Å3) Log volume Work function (eV)
0.95 743.17 2.87 4.18
1.00 814.28 2.91 4.29
1.05 889.79 2.95 4.40

Ci j =



43.65 36.48 24.26 0 0 0

91.00 20.78 0 0 0

69.44 0 0 0

24.57 0 0

44.69 0

25.24


in units of GPa.

The Ci j diagonal components are the elastic constants for C11, C22 and C33 and the

shear elastic constants for C44, C55 and C66. The off-diagonal constants are referred to as

the mixed elastic constants, e.g. C31, but are not of further use in this work.257 As such,

the elastic constants are 43.65, 91.00 and 69.44 along the a, b and c directions.

The term Ed in Equation 5.12 is the deformation potential, which is the work function

variance as a function of the natural log of cell volume. As logs are unitless, the overall

unit of Ed is energy. For SnS, the relevant parameters for the calculation of this term are

shown in Table 5.4, and yield the value of Ed of 2.72 eV.

With this data, the values µl for SnS at 298 K can be obtained as 2.97×10−2, 7.92 and

2.20×10−2 m2 V−1 s−1 along a, b and c.

Returning to Equation 5.8, neutral impurities also scatter charges according to the

equation
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µn =
m∗pe3

20ε∞εvh̄3NN
(5.13)

where NN is the density of neutral defects. Here, NN is approximated as the concen-

tration of Schottky defects, which consist of a cation and anion vacancy within the bulk

crystal, usually having migrated into the bulk from the crystal surface. The equivalent na-

ture of the defect pairs the system is overall charge neutral, but will have a non-zero defect

concentration above 0 K.

As before the defect concentration can be found through an Arrhenius equation (Equa-

tion 5.3, this time with a factor of 2kBT to account for the dual nature of the defects and,

again, is calculated at the same temperature as the crystal synthesis. This approach yields

an NN of 4.89×1011 cm−3.

As such, it can be found that for SnS at 298 K, the values of µn are 3.15×106, 4.10×

105 and 4.586 m2 V−1 s−1 along a, b and c, respectively.

For completion, the corresponding equation for grain boundary scattering µg is in-

cluded as

µg =

(
L2e2

2πm∗pkBT

)1/2

exp
(
− ψb

kBT

)
(5.14)

where L is the grain size and ψb is the grain boundary energy barrier. It can be seen

that accounting for all possible grain boundary combinations and their barrier heights is a

non-trivial task with electronic structure methods and that the size of the grain boundaries

would be system dependent. As bulk calculations correspond to infinite perfect solids, the

grain boundary scattering mechanism is neglected in this work.

Mobilities can now be found from Equation 5.8, which gives values of 1.77× 10−3,

2.36×10−2 and 1.29×10−3 m2 V−1 s−1 in a, b and c directions respectively.
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This yields an isotropic mobility of 236.7 cm2 V−1 s−1, compared to the experimen-

tally observed Hall mobility value of 95.35 cm2 V−1 s−1 for SnS single crystals. The the-

oretically obtained values are unsurprisingly high when compared to those obtained from

Hall measurement considering the high temperatures implicit in these calculated values.

What does remain surprising is the degree to which anisotropy is overestimated using this

method. Comparing again with the Hall-effect mobility measurement, the value of mobil-

ity in the b direction was found to be 29 % larger than that along the a vector, whereas

here, the mobility in the b direction is predicted to be more than 13 times that along a.

The Python code written to produce anisotropic values for mobility, as discussed in

this section for SnS, can be found in the Appendix, Section A.5.

5.2.4 Modelled conductivity for SnS

Given the values of mobility derived in the previous section, it is possible to arrive at

anisotropic values of conductivity as a function of temperature, using the Boltzmann trans-

port equations implemented in the BoltzTrap code.

Given Equation 5.4, anisotropic values of τ can be found to be 1.08× 10−14, 2.09×

10−14 and 1.091×10−14 s−1 along a, b and c respectively, which are of the same order as

those observed for solid elements at 273 K.252

The Boltzmann transport equations, as solved by the BoltzTrap code, report conduc-

tivity per relaxation time as a function of temperature and chemical potential

σ(T ;EF)

τ
=

1
Ω

∫
σ(E)

[
−

δ fµcp(T ;E)
δE

]
δE (5.15)

where Ω is the volume of the unit cell. Now that relaxation time has been found, it is

possible to find the conductivity from the same level of theory.

These results, shown in Figure 5-5, show the strong electrical anisotropy, with the
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Figure 5-5: The anisotropic conductivity calculated for SnS using the values of τ cal-
culated from the previous section (left) and using the recommended isotropic τ value of
1×10−14 (right).

higher degree of conductivity along the b axis, that has been observed repeatedly through-

out the previous chapters. However, when compared with the experimentally observed

conductivities, of up to 70 Ω−1 cm−1, the values are much too high. Even if the value of

τ is held fixed at 1×10−14 for each of the three axes, effectively decoupling the results

of this section from those of the previous section, the values are still much too large (also

shown in Figure 5-5).

While it has been noted that to obtain reliable results using this method requires a sig-

nificantly larger sampling of k-points than for standard properties,253 it can be seen from

Figure 5-6 that for the b axis at least, the k-point mesh appears to converge to an unrea-

sonably large value for the 300 K conductivity, relatively quickly. The values along the

a vector appear to be approaching those of the b direction with increasing k-grid density;

however, the conductivity in the c and b vector do not appear to be varying as much and are

still a factor of nine apart. This factor is reported to be six in experiment,246 an observation

that indicates that perhaps the qualitative anisotropy, at least, can be reproduced by the cur-

rent level of treatment at a sufficiently high k-grid resolution. It should be noted, however,
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Figure 5-6: k-grid convergence for the conductivity of SnS from the BoltzTrap code, from
blue ( a resolution of 486 points), to cyan (a resolution of 13,122 points).

that the reciprocal sampling resolution of over 13,000 k-points, used here to produce both

Figure 5-5 and Figure 5-6, is orders of magnitude times larger than the recommended sam-

pling by Moreno et al.,258 that was used in order to arrive at the accurate band structure

and concomitant dielectric properties discussed in the previous chapter.

5.2.5 Results comparison & discussion

Once again, this chapter has shown how SnS can appear ideal as a photovoltaic material at

first glance. The large conductivities presented, that are necessary for high efficiency PV

devices, and the strong preference for tin vacancy formation, that defines a robust intrinsic

p-type nature, certainly would be considered attractive. The PR-TRMC results obtained

for SnS, however, could provide an explanation as to why high-efficiency PV devices with

SnS as an absorber layer have not yet been realised. Usually, the reported short-circuit

current is acceptable, yet the open-circuit voltage is too low, typically lower than 200 mV.

It is possible that, due to a high background conductivity, the splitting of the quasi Fermi

level under illumination is suppressed. Indeed, the reduction of dark conductivity of a PV

cell has been shown to increase obtained voltage in the literature.259

The sulfur vacancy, in SnS, was thought to potentially act as an electron trap, but it
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has been shown that the sulfur vacancies themselves do not compensate for the p-type

contribution of tin vacancies, due to defect levels deep in the band gap.211 In this way, it

is possible that the intrinsic defects of SnS do not mutually compensate, and is potentially

the origin of the suppressed quasi-Fermi level splitting presented for the single crystal SnS

in this work, and the low voltages obtained in devices.84 That said, it is possible that this

observation is unique to this study as the relatively high number of iodine defects present in

the crystals (see Section 3.1.2) are considered an n-type, extrinsic dopant, given the lower

valence of sulfur. As such, a high concentration of n-type iodine, and p-type tin vacancy

defects could be the origin of the pinned Fermi levels. Further work, using an alternate

single crystal synthesis technique would be required to fully explore this possibility.

The ease of formation of intrinsic defects in SnS is also elucidated explicitly with the

use of DFT. Even relative to the alternate tin sulfide phases and the comparable synthesis

conditions, SnS shows a predicted concentration of intrinsic defects, five orders of magni-

tude greater than the next highest predicted defect concentration (tin vacancy in Sn2S3). It

is possible that such a tendency to form defects relates to the instability of single crystals

seen throughout this project, while the sesqui- and disulfide phases have shown to be more

resistant with respect to defect formation and crystallite instability.

The PR-TRMC results for SnS2 show an excellent electron drift length that is con-

sidered desirable for an application such as photovoltaics, however, the charge lifetimes

corroborate observations of a 2-dimensional transport system. Such systems are predicted

to have many applications in nano-scale electronic devices, but would be problematic for

charge extraction in PV configurations, unless a method of deposition that allowed for

crystal growth of bonded planes perpendicular to a device contact were identified.

Finally, Sn2S3 does not appear to suffer from the same problem as SnS (i.e. no large

density of carriers and concomitant dark conductivity), yet has a high carrier mobility,

larger than amorphous silicon, for example.260 It is possible that a thin-film of stoichiomet-

127



ric Sn2S3, extrinsically doped in order to be p- or n-type could be a superior photo-active

material to tin monosulfide.

The transport properties derived from the DFT ground state electronic structure serve

to illustrate the degree to which theoretical results can be used to assess materials prop-

erties. Similar levels of theory have recently been successfully applied to alternate pho-

tovoltaic materials with the goal of determining similar parameters.253,261 Unfortunately,

it appears that the theoretical methods used in this thesis to arrive at values of mobility

and conductivity significantly overestimate the electronic anisotropy and charge transport

properties of SnS. While the anisotropy is certainly present in bulk SnS, it is the conclu-

sion of this work that the methods detailed are more suited to comparative or screening

studies, as previously performed by others,253 rather than quantitative prediction. It is

likely that the effective mass tensor is the most accurate quantity pertaining to transport

properties that can be derived purely from ab initio methods at this time, being directly

related to band structure, which has been shown in this work (and others) to agree closely

with experiment.

It should be noted that the successful photovoltaic material CZTS has also been shown

to be anisotropic with respect to charge transport,262 and so this is likely not a major

efficiency loss mechanism for SnS in PV devices.
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Chapter 6

Conclusion

This project has explored the multiphasic tin sulfide system with state of the art density

functional theory and bulk materials analysis of single crystals. It has been the aim of this

report to identify potential factors that might limit photovoltaic performance of the earth

abundant tin monosulfide.

In the Introduction it was shown that a surprising number of potential issues associated

with tin monosulfide are also associated with copper-zinc-tin-sulfide, a material that is

able to achieve certified efficiencies of more than twice those of SnS.53 Several of these

expected ‘minor’ issues are reported for SnS in this project; however, several interesting

and novel insights into the tin sulfide chemical phase space, that are unique to this system,

have also been made.

First of all, it has been argued in this report that zincblende tin monosulfide does not

now, nor ever has, existed. Instead, it is proposed that the rocksalt phase of SnS has been

mis-assigned as zincblende, which represents a significant reduction in the complexity of

the phase space of SnS, from four known phases to three. Also of significance, is that

rocksalt tin monosulfide is known to form under epitaxial strain and could be present in
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strained thin-film heterojunctions, i.e. device configurations. Such a species present at an

interface could evade detection by composition analysis techniques such as depth profil-

ing XPS,175 and be concealed by orthorhombic SnS in surface sensitive characterisation

techniques, such as grazing incidence X-ray diffraction, used by countless reports in the

literature.83,220,263 Worryingly for PV applications, the rocksalt conformation tin mono-

sulfide is predicted to exhibit the rare phenomenon of topological insulation,177 which

would be detrimental to device performance if such a state were present at interfaces.

Secondly, the presence of phase impurities has also shown to be likely problematic for

tin sulfide PV devices, both by single crystal and DFT analysis. It is expected that Sn2S3,

which has been shown to be a persistent, stable phase throughout this report, would act

as a recombination centre if it were locally present in an SnS sample. Worse still, SnS2

is predicted to act as a blocking layer for charge extraction, which is disconcerting, given

its observed presence at SnS heterojunction interfaces in the literature.175 Whilst CZTS

is similarly expected to suffer from the presence of impurity phases, the successful CdTe

system has no known competing phases.

Thirdly, tin monosulfide exhibits a work function that is around 1 eV lower in magni-

tude that the current generation of successful photovoltaic materials, including CZTS. As

a result, it is possible to conclude that the architectures of device used for SnS to date are

not optimal, as they are designed to work with materials with band edge states of higher

binding energy. Similarly, the low work function of SnS means that the presence of a

metal disulfide interlayer, which are shown to likely form at contact interfaces in devices,

will block efficient charge extraction, unlike for higher work function materials. While

no such device degradation is observed directly in this project, the prediction for this oc-

currence agrees with the facile loss of sulfur for SnS observed repeatedly in this project.

These predictions are commensurate with the observed low voltage output from SnS de-

vices that still present a relatively high current and internal quantum efficiency.81,84 It is
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worth stating that the work function of a material, if properly matched, has no affect on

device performance, only the band gap represents an intrinsic limitation. As such, this

prediction does not preclude the use of SnS as a photovoltaic material.

The observation of non-commensurate device contacts being used to trial potential

photovoltaic materials also raises a broader concern. It would seem likely that many more

photoactive materials might be able to contribute to the field of photovoltaics, were the de-

vice components more suitably tailored to the physical properties of the photon absorber

layer. In this project, DFT has been shown to be a powerful predictive tool that can guide

the construction of novel device configurations; not only is it possible to account for con-

tact reactions inside a device, but the natural band alignments and likely electronic effects

can also be predicted.

This project has also been unique in its direct comparison between theory and experi-

ment, with results that are expected to be of greater use to the wider community. First of

all, the thermodynamic reactions allow for an explicit understanding of system behaviour.

For the SnS single crystals, the reaction enthalpies studied for the carrier species, iodine,

allowed for an explicit prediction as to the optimisation of the chemical vapour transport

method, for these and related systems in the future. Similarly, an optimal back contact for

SnS was identified from the judicious selection of just four earth-abundant metals, that has

yet to be implemented in PV devices. It is expected that broader searches could benefit the

wider field at large.

Subsequently it was shown that an incredible level of agreement could be found be-

tween electronic structure calculations and experiment, even for an anisotropic system

such as SnS. As a result, it is expected that properties closely related to the band structure,

such as charge carrier effective mass, for example, are sufficiently accurate for quantitative

analysis and comparative screening studies.253 In this case, such analysis allowed for the

identification of an optimal crystallographic orientation for SnS thin films, that had not
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been targeted prior to this work.

The exploration of the transport properties of the tin sulfides present in Chapter 5

(i.e. mobility and conductivity), however, appear to be pushing the limits of what time-

independent electronic structure theory can realistically be expected to achieve. It is pos-

sible to see from Chapter 2, the great effort that has gone into reducing the complexity

associated with treating solids at a quantum mechanical level. This, naturally results in

the treatment of a perfect bulk solid. Thus, it is probably unsurprising that quantitatively

predicting a physical property that depends on defects and imperfections is not yet as well

implemented as some of the other theoretical methods. That is not to say that DFT is

powerless in this regard, indeed the defect concentrations predicted in Section 5.2.1 were

successful in elucidating the experimentally observed behaviour of the tin sulfide phases,

both in this report and in the literature.

A limitation of this project is the quality of the single crystals when it came to de-

fect analysis. Certainly the lack of observed quasi-Fermi level splitting with PR-TRMC

analysis represents a potential loss mechanism for PV. However, with the known iodine

impurities in the crystal it is impossible to discern whether the hole and electron states

were split by tin and sulfur intrinsic vacancies, or tin vacancies and iodine dopants, re-

spectively.

Finally, it should not be forgotten that SnS2 and Sn2S3 are interesting semiconducting

materials in their own right, despite the fact that their consideration has been secondary to

SnS in this thesis. Indeed, the TGA for these single crystals and observations of stability

with respect to oxygen exposure, would indicate that both of these phases are more stable

than SnS, with electronic configurations more directly applicable to certain uses. For

example, the deep energy levels and wide band gap of SnS2 have lead to reports of a

photon conversion efficiency of over 38 % for water splitting with this material.264 SnS2

also belongs to the class of 2-dimensional semiconductors that have received enormous
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attention for nano-scale electronics recently. It is hoped that the placement of the energy

levels and band gaps of tin disulfide in this report might be of use for these applications,

outside of photovoltaics.

Likewise, this report represents the first time an in-depth analysis as to the properties of

tin sesquisulfide has been performed. The potential suitability of Sn2S3 as a photovoltaic

material presents itself throughout this report, with properties that are arguably more de-

sirable than tin monosulfide found in each of the three research chapters of this thesis. For

example, the stability of the material seems greater than that of SnS, the work function

and band gap lie more closely in energy with those of CZTS than do those of SnS, and the

PR-TRMC analysis indicates more suitable transport properties than SnS as well.

This project provides a platform for further study of all earth abundant photovoltaic

materials, not just SnS. It is hoped that, given the results of this project, a more holistic

approach will be employed in the future implementation of potential photoactive materials,

tailoring the entire device to suit the properties of the absorber layer.
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Chapter 7

Future work

The results presented in this thesis provide much opportunity for the further exploration of

the phases of tin monosulfide and the field of sustainable PV.

Firstly, as was discussed in Chapter 3, the CVT synthesis employed in this project was

shown to lead to a relatively high concentration of iodine impurities in the SnS sample at

least, but, most likely, all three phases. However, it is proposed that CVT with high purity

precursors, cleaned and then polished could provide the crystal seed for use in a subsequent

Bridgman-Stockbarger growth method, which does not require a carrier agent. In this

way, large amounts of high-purity single crystals could be obtained. Keeping these under

vacuum for as long as possible should allow for more accurate derivation of electronic

properties using the characterisation techniques used in this report. UPS and IPES for

example, that are sensitive to surface contaminants, could even receive crystals that had no

prior exposure to oxygen or adventitious carbon, as they are synthesised, transported and

analysed under vacuum.

Secondly, it was shown in this report that SnS appears to be surprisingly unstable, even

when compared to the alternate tin sulfide phases. Chapter 3 detailed the observation of
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sulfur loss at room temperature and atmospheric conditions, while Chapter 4 showed that

heating under vacuum showed an accelerated loss of sulfur leading to surface metallisa-

tion. An example experiment to further investigate the observations detailed in this report

include the sealing of SnS single crystals in an inert atmosphere, for a prolonged period

of time. In this way, the sample is still subject to an ambient pressure and temperature,

yet the reactive component of an oxygen atmosphere is removed. If SnS were to degrade

somehow under these conditions, it is unlikely that it would ever be able to find use in a

solid state device. In the same way that Cu2S was disavowed after almost all devices were

found to deteriorate over time due to copper diffusion that is difficult to control,51 it is

possible that this could be the case for sulfur in SnS.

Similarly, the strong driving force behind the formation of a high concentration of de-

fects was presented in Chapter 5. With a hypothetical high purity crystal from Bridgman-

Stockbarger synthesis, the intrinsic defects could be observed explicitly, by the use of

positron annihilation spectroscopy. This technique has been shown to be especially useful

in the observation of lattice vacancy defects in semiconductor materials,265unlike, for ex-

ample the GDMS technique used in this project. In this way the optimal region of p-type

conductivity of SnS could be identified as a function of single crystal synthesis conditions,

and the large dark conductivity present in these crystals, suppressed.

Again, following on from the successful synthesis of high purity material, it would be

possible to go one step further. Lambros et al. reported the successful exfoliation of single

crystal SnS with adhesive tape, allowing for the isolation of thin-films, from a high purity,

uniform precursor.128 Such a possibility is commensurate with the continued observation

of weak interlayer interaction for the SnS presented in this thesis. Care must be taken with

respect to oxygen exposure in this regard, especially for thin-films, however this would

allow for the presence of off-stoichiometric phases to be investigated using 2-dimensional

mapping techniques, such as Raman spectroscopy, for example.
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It is predicted in this work that an MoS2 interlayer exists in SnS junctions with molyb-

denum. It is also predicted that increased performance could be obtained were tin used as a

device contact, and were SnS orientated in the (010) direction. The degree to which these

factors could increase performance remain to be seen; ultimately, the predictions made

in this report can only be verified with device fabrication and suitable characterisation.

For example, the power and sensitivity of depth profile X-ray photoelectron spectroscopy

has been demonstrated in the literature,175 were this performed on an SnS - molybdenum

heterojunction, the presence of the disulfide could be verified.

Finally, SnS2 and Sn2S3 ought to be further investigated as photo-active materials.

Once again a precursor crystal synthesised from CVT, could seed much larger mass of

high purity crystalline phases. While SnS2 is already gaining interest as a water splitting

photocatalyst, Sn2S3 has received little attention to date. Both the theory and experiment

in this report predict that Sn2S3 could be a suitable photon absorbing material and that it

would form a p-n junction with SnS2. These results indicate that a tin film with a depth-

graded sulfur content could create strong rectifying behaviour in a device. The potential

existence of Sn3S4 and Sn4S5 could also be investigated using materials simulation, which

has been shown in this project to be an instructive tool in the analysis of the tin-sulfur

stability phase space.
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[125] H. Hellmann, Einführung in die Quantenchemie, Franz Deuticke, 1937.

[126] F. Bloch, Z. Phys., 1929, 52, 555–600.
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Appendix A

Appendix

A.1 Single crystal XRD data

Table A.1: Single crystal crystallographic data for SnS2 & Sn2S3.

SnS2 Sn2S3
Mr 182.81 333.56
Crystal System Trigonal Orthorhombic
Space Group R -3 Pnma
a,b,c ( Å) 3.6349(2), 3.6349(2), 52.856(4) 8.8490(2) 3.74150(10) 13.9925(3)
γ (◦) 120 90
V (Å3) 604.80(7) 463.271(19)
Z 9 4
µ(mm−1) 10.676 11.929
F(000) 738 592
Tmin /Tmax 0.14450/1.00000 0.21362 / 1.00000
2θ range (◦) 3.47 / 32.81 2.91 / 32.84
No. reflections 508 11203
R[F]/wR[F2] (all data) 0.0365 / 0.0793 0.0229 / 0.0485
Restraints/Parameters 0/15 0/32

153



A.2 Glow discharge mass spectroscopy data

Table A.2: Glow discharge mass spectroscopy of an SnS single crystal

Element Detection Limit Concentration
(ppm wt) (ppm wt) (atom ppm) (cm−3)

Li 0.010 < 0.01
Be 0.010 < 0.01
B < 0.01
F 0.100 < 0.1

Na 0.390 1.279 5.32e16
Mg 0.050 0.120 0.372 1.55e16
Al 5.300 14.809 6.16e17
Si - 0.3 wt% 1.800 4.832 2.01e17
P < 0.05
S Matrix Matrix
Cl 2.400 5.104 2.12e17
K 0.100 < 0.1
Ca 0.270 0.508 2.11e16
Sc 0.005 < 0.005
Ti 0.010 < 0.01
V 0.010 < 0.01
Cr < 0.01
Mn 0.010 < 0.01
Fe 0.010 0.190 0.256 1.07e16
Co 0.010 0.080 0.102 4.26e15
Ni 0.010 0.080 0.103 4.27e15
Cu 0.010 < 0.01
Zn 0.050 0.058 2.40e15
Ga 0.010 < 0.01
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Element Detection Limit Concentration
(ppm wt) (ppm wt) (atom ppm) (cm−3)

Ge 0.010 < 0.01
As 10.000 < 0.1
Se 0.050 < 0.05
Br 0.050 < 0.05
Rb 0.010 < 0.01
Sr 0.010 < 0.01
Y 0.010 < 0.01
Zr 0.010 < 0.01
Nb 0.010 < 0.01
Mo 0.050 < 0.05
Ru 0.050 < 0.05
Rh 0.010 < 0.01
Pd 0.010 < 0.01
Ag 0.500 < 0.5
Cd 0.500 < 0.5
In Binder Binder
Sn Matrix Matrix
Sb 100.000 61.917 2.58×1018

Te < 0.5
I 0.500 620.000 368.323 1.53×1019

Cs 0.100 < 0.1
Ba 0.050 < 0.05
La 0.050 < 0.05
Ce 0.010 < 0.01
Pr 0.010 < 0.01
Nd 0.010 < 0.01
Sm 0.010 < 0.01
Eu 0.050 < 0.05
Gd 0.010 < 0.01
Tb 0.010 < 0.01
Dy 0.010 < 0.01
Ho 0.010 < 0.01
Er 0.010 < 0.01
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Element Detection Limit Concentration
(ppm wt) (ppm wt) (atom ppm) (cm−3)

Tm 0.010 < 0.01
Yb 0.010 < 0.01
Lu 0.010 < 0.01
Hf 0.010 < 0.01
Ta Source Source
W 0.010 < 0.01
Re 0.010 < 0.01
Os 0.010 < 0.01
Ir 0.010 < 0.01
Pt 0.010 < 0.01
Au 0.100 < 0.1
Hg 0.050 < 0.05
Tl < 0.05
Pb 280.000 101.878 4.24×1018

Bi 4.300 1.551 6.45×1016

Th 0.005 < 0.005
U 0.005 < 0.005
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A.3 X-ray photoelectron spectroscopy data

Table A.3: XPS atomic concentration peak assignments of SnS, SnS2 & Sn2S3

Peak SnS SnS post anneal SnS2 Sn2S3
Sn a 7.62 3.83 1.6 9.55
Sn b 12.33 13.86 0 6.9
Sn c 10.12 15.26 0 5.73
Sn d 0.47 0.72 0 0.2
Sn e 0 0 19.43 0
Sn f 0 0 0.74 0
S a 12.03 13.32 27.51 10.12
S b 3.45 2.41 0 1.33
S c 0 0 2.1 0
C a 17.2 21.62 20.12 26.41
C b 3.14 1.96 2.17 2.34
C c 0 0 9.44 0
O a 20.59 20.29 3.11 20.2
O b 7.71 4.26 6.48 13.99
O c 2.57 1.34 3.26 3.22
O d 0 0 4.03 0
I a 2.78 1.14 0 0

157



A.4 Optical absorption coefficient script

# ! / b i n / p y t ho n

import numpy as np

import m a t p l o t l i b . p y p l o t a s p l t

RDie = l i s t ( )

ID ie = l i s t ( )

# Open t h e f i l e and s p l i t i n t o L i n e s

f = open ( ’OUTCAR’ , ” r ” )

l i n e s = f . r e a d l i n e s ( )

f . c l o s e ( )

copy = 0

i = 0

f o r l i n e in l i n e s :

i n p = l i n e . s p l i t ( )

i f i n p == [ ] :

c o n t in u e

i f l e n ( i n p ) > 3 and i n p [ 2 ] == ”IMAGINARY”

and i n p [ 3 ] == ”DIELECTRIC” :

copy = 1

i f copy == 1 and l e n ( i n p ) > 3 and i n p [ 2 ] == ”REAL” :

copy = 0

i f copy == 1 and l e n ( i n p ) == 7 and i n p [ 1 ] != ”X” :

ID ie . append ( ( i n p [ : ] ) )

i = i + 1
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ID ie = np . a s a r r a y ( ID ie )

ID ie = IDie . a s t y p e ( np . f l o a t )

copy = 0

i = 0

f o r l i n e in l i n e s :

i n p = l i n e . s p l i t ( )

i f i n p == [ ] :

c o n t in u e

i f l e n ( i n p ) > 3 and i n p [ 2 ] == ”REAL”

and i n p [ 3 ] == ”DIELECTRIC” :

copy = 1

i f copy == 1 and l e n ( i n p ) > 3 and i n p [ 1 ] == ” o u t e r m o s t ” :

copy = 0

i f copy == 1 and l e n ( i n p ) == 7 and i n p [ 1 ] != ”X” :

RDie . append ( ( i n p [ : ] ) )

i = i + 1

RDie= np . a s a r r a y ( RDie )

RDie = RDie . a s t y p e ( np . f l o a t )

t o p = 0

bot tom = l e n ( RDie [ : , 1 ] )

C=2.99792458∗10∗∗10 # cm / s

h =4.135668∗10∗∗−15 # eV S
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Alpha = l i s t ( )

f o r x in range ( top , bot tom ) :

f o r y in range ( 1 , 4 ) :

Alpha . append ( ( 2 ∗ ( RDie [ x , 0 ] / h ) ∗ (

np . s q r t ( 2 ) / 2 ) ∗ np . s q r t ( (

RDie [ x , y ]∗∗2 + IDie [ x , y ]∗∗2)∗∗0.5−RDie [ x , y ] ) ) / C)

Alpha= np . a s a r r a y ( Alpha )

Alpha = Alpha . a s t y p e ( np . f l o a t ) . r e s h a p e ( bottom , 3 )

p l t . p l o t ( RDie [ : , 0 ] , Alpha [ : , 0 ] , ’ r−’ , lw =2 , l a b e l = ’ a ’ )

p l t . p l o t ( RDie [ : , 0 ] , Alpha [ : , 1 ] , ’b−’ , lw =2 , l a b e l = ’ b ’ )

p l t . p l o t ( RDie [ : , 0 ] , Alpha [ : , 2 ] , ’k−’ , lw =2 , l a b e l = ’ c ’ )

p l t . x l im ( 0 , 3 . 5 )

p l t . y l im ( 0 , 100000)

p l t . x l a b e l ( r ’ Energy ( eV ) ’ , f o n t s i z e =18)

p l t . y l a b e l ( r ’ A b s o r p t i o n C o e f f i c i e n t $10 ˆ5 $ cm$ˆ{−1}$ ’ ,

f o n t s i z e =18)

p l t . t i c k l a b e l f o r m a t ( s t y l e = ’ s c i ’ , a x i s = ’ y ’ , s c i l i m i t s = ( 0 , 0 ) )

p l t . l e g e n d ( l o c =2 ,

n c o l =1 , b o r d e r a x e s p a d = 0 . )

p l t . show ( )
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A.5 Charge carrier mobility script

# ! / b i n / p y t ho n

import numpy as np

import m a t p l o t l i b . p y p l o t a s p l t

import s c i p y . c o n s t a n t s a s spc

Np = 2 . 2 8 e25 # r e c i p r o c a l c u b i c m

Nn = 4.888689 e17 # r e c i p r o c a l c u b i c m

Mpa = 1.339634 e−30 # kg

Mpb = 1.418162 e−31 # kg

Mpc = 9.868653 e−31 # kg

Ca = 6 .9436 e10 # p a s c a l s

Cb = 9 .1004 e10 # p a s c a l s

Cc = 4 .3649 e10 # p a s c a l s

Era = 11 .846846 # u n i t l e s s

Erb = 14 .018616 # u n i t l e s s

Erc = 12 .704445 # u n i t l e s s

Ed = 4 .3627 e−19 # j o u l e s

T = 298 # k e l v i n

x i a = ( ( 3 ∗ ( spc . p i ∗ ∗ 2 ) ) ∗ ∗ ( 1 . / 3 . ) ) ∗ ( (

spc . e p s i l o n 0 ∗Era ∗ ( spc . h ∗∗2 )∗ (

Np ∗ ∗ ( 1 . / 3 . ) ) ) / ( Mpa∗ ( spc . e ∗ ∗ 2 ) ) )

F i a = np . l o g (1+ x i a )−( x i a / ( 1 + x i a ) )

muia = ( 3∗ ( spc . e p s i l o n 0 ∗Era )∗∗2∗ ( spc . h ∗ ∗ 3 ) ) / (

4∗Mpa∗∗2∗ spc . e ∗∗3∗ F i a ) #mˆ2 / V s
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x i b = ( ( 3 ∗ ( spc . p i ∗ ∗ 2 ) ) ∗ ∗ ( 1 . / 3 . ) ) ∗ ( (

spc . e p s i l o n 0 ∗Erb ∗ ( spc . h ∗∗2 )∗ (

Np ∗ ∗ ( 1 . / 3 . ) ) ) / ( Mpb∗ ( spc . e ∗ ∗ 2 ) ) )

F ib = np . l o g (1+ x i b )−( x i b / ( 1 + x i b ) )

muib = ( 3∗ ( spc . e p s i l o n 0 ∗Erb )∗∗2∗ ( spc . h ∗ ∗ 3 ) ) / (

4∗Mpb∗∗2∗ spc . e ∗∗3∗ Fib ) #mˆ2 / V s

x i c = ( ( 3 ∗ ( spc . p i ∗ ∗ 2 ) ) ∗ ∗ ( 1 . / 3 . ) ) ∗ ( (

spc . e p s i l o n 0 ∗Erc ∗ ( spc . h ∗∗2 )∗ (

Np ∗ ∗ ( 1 . / 3 . ) ) ) / ( Mpc∗ ( spc . e ∗ ∗ 2 ) ) )

F i c = np . l o g (1+ x i c )−( x i c / ( 1 + x i c ) )

muic = ( 3∗ ( spc . e p s i l o n 0 ∗Erc )∗∗2∗ (

spc . h ∗ ∗ 3 ) ) / ( 4 ∗Mpc∗∗2∗ spc . e ∗∗3∗ F i c ) #mˆ2 / V s

mula = (2∗ np . s q r t (2∗ spc . p i )∗ spc . e∗ spc . hba r ∗∗4∗Ca ) / (

3∗Mpa ∗ ∗ ( 5 . / 2 . ) ∗ Ed∗∗2∗ ( spc . k∗T ) ∗ ∗ ( 3 . / 2 . ) ) #mˆ2 / V s

mulb = (2∗ np . s q r t (2∗ spc . p i )∗ spc . e∗ spc . hba r ∗∗4∗Cb ) / (

3∗Mpb ∗ ∗ ( 5 . / 2 . ) ∗ Ed∗∗2∗ ( spc . k∗T ) ∗ ∗ ( 3 . / 2 . ) ) #mˆ2 / V s

mulc = (2∗ np . s q r t (2∗ spc . p i )∗ spc . e∗ spc . hba r ∗∗4∗Cc ) / (

3∗Mpc ∗ ∗ ( 5 . / 2 . ) ∗ Ed∗∗2∗ ( spc . k∗T ) ∗ ∗ ( 3 . / 2 . ) ) #mˆ2 / V s

muna = (Mpa∗ spc . e ∗ ∗ 3 ) / (

20∗Era ∗ spc . e p s i l o n 0 ∗ spc . hba r ∗∗3∗Nn ) #mˆ2 / V s

munb = (Mpb∗ spc . e ∗ ∗ 3 ) / (

20∗Erb∗ spc . e p s i l o n 0 ∗ spc . hba r ∗∗3∗Nn ) #mˆ2 / V s

munc = (Mpc∗ spc . e ∗ ∗ 3 ) / (

162



20∗Erc ∗ spc . e p s i l o n 0 ∗ spc . hba r ∗∗3∗Nn ) #mˆ2 / V s

invmua = 1 / muia + 1 / mula + 1 / muna

invmub = 1 / muib + 1 / mulb + 1 / munb

invmuc = 1 / muic + 1 / mulc + 1 / munc

mua = 1 / invmua

mub = 1 / invmub

muc = 1 / invmuc

to tmu = np . s q r t ( mua∗∗2 + mub∗∗2 + muc∗∗2)

t a u a = ( mua∗Mpa ) / spc . e

t a u b = ( mub∗Mpb ) / spc . e

t a u c = ( muc∗Mpc ) / spc . e

f =open ( ’ b o l t z t r a p . c o n d t e n s f i x d o p i n g ’ , ’ r ’ )

c o n d t e n s = f

c o n d t a u = np . g e n f r o m t x t ( cond t ens , d t y p e = f l o a t , d e l i m i t e r = ’ ’ ,

s k i p r o w s =1 , s k i p h e a d e r =0 , s k i p f o o t e r =0 ,

u s e c o l s = ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 ) )

c o n d u c t = c o n d t a u ∗ t a u a #Ohmˆ−1 mˆ−1

g=open ( ’ b o l t z t r a p . c o n d t e n s f i x d o p i n g ’ , ’ r ’ )

tempk = g

tempk = np . g e n f r o m t x t ( tempk , d t y p e = f l o a t , d e l i m i t e r = ’ ’ ,
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s k i p r o w s =1 , s k i p h e a d e r =0 , s k i p f o o t e r =0 , u s e c o l s = ( 0 ) )

c o n d u c t a 1 = c o n d u c t [ : , 0 ]

c o n d u c t a 2 = c o n d u c t [ : , 1 ]

c o n d u c t a 3 = c o n d u c t [ : , 2 ]

c o n d u c t a = np . s q r t ( c o n d u c t a 1 ∗∗2 + c o n d u c t a 2 ∗∗2 + c o n d u c t a 3 ∗∗3)

conduc tb1 = c o n d u c t [ : , 3 ]

conduc tb2 = c o n d u c t [ : , 4 ]

conduc tb3 = c o n d u c t [ : , 5 ]

c o n d u c t b = np . s q r t ( conduc tb1 ∗∗2 + conduc tb2 ∗∗2 + conduc tb3 ∗∗3)

c o n d u c t c 1 = c o n d u c t [ : , 6 ]

c o n d u c t c 2 = c o n d u c t [ : , 7 ]

c o n d u c t c 3 = c o n d u c t [ : , 8 ]

c o n d u c t c = np . s q r t ( c o n d u c t a 1 ∗∗2 + c o n d u c t a 2 ∗∗2 + c o n d u c t a 3 ∗∗3)

p l t . p l o t ( tempk , c o n d u c t a ∗0 . 0 1 , ’k−−’ , l a b e l = ’A’ )

p l t . p l o t ( tempk , c o n d u c t b ∗0 . 0 1 , ’b−−’ , l a b e l = ’B ’ )

p l t . p l o t ( tempk , c o n d u c t c ∗0 . 0 1 , ’ r−−’ , l a b e l = ’C ’ )

p l t . l e g e n d ( ( ’ a ’ , ’ b ’ , ’ c ’ ) ,

’ uppe r l e f t ’ , shadow= F a l s e )

p l t . t i t l e ( ’ C o n d u c t i v i t y vs t e m p e r a t u r e ’ )

p l t . x l a b e l ( ’ Tempera tu r e (K) ’ )

p l t . y l a b e l ( r ’ C o n d u c t i v i t y ( $\Omegaˆ{−1}$ cm$ˆ{−1}$ ) ’ )

p l t . show ( )
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